A Comprehensive Review on Conventional and Machine Learning-Assisted Design of 5G Microstrip Patch Antenna
A significant advancement in wireless communication has occurred over the past couple of decades. Nowadays, people rely more on services offered by the Internet of Things, cloud computing, and big data analytics-based applications. Higher data rates, faster transmission/reception times, more coverag...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-10, Vol.13 (19), p.3819 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 3819 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Chhaule, Nupur Koley, Chaitali Mandal, Sudip Onen, Ahmet Ustun, Taha Selim |
description | A significant advancement in wireless communication has occurred over the past couple of decades. Nowadays, people rely more on services offered by the Internet of Things, cloud computing, and big data analytics-based applications. Higher data rates, faster transmission/reception times, more coverage, and higher throughputs are all necessary for these emerging applications. 5G technology supports all these features. Antennas, one of the most crucial components of modern wireless gadgets, must be manufactured specifically to meet the market’s growing demand for fast and intelligent goods. This study reviews various 5G antenna types in detail, categorizing them into two categories: conventional design approaches and machine learning-assisted optimization approaches, followed by a comparative study on various 5G antennas reported in publications. Machine learning (ML) is receiving a lot of emphasis because of its ability to identify optimal outcomes in several areas, and it is expected to be a key component of our future technology. ML is demonstrating an evident future in antenna design optimization by predicting antenna behavior and expediting optimization with accuracy and efficiency. The analysis of performance metrics used to evaluate 5G antenna performance is another focus of the assessment. Open research problems are also investigated, allowing researchers to fill up current research gaps. |
doi_str_mv | 10.3390/electronics13193819 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3116611428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A813057807</galeid><sourcerecordid>A813057807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-7ba4e674407eadb7f0df837bff94530c864dcf5707c64f494e2e8bbb384d3dd73</originalsourceid><addsrcrecordid>eNptUcFKAzEUXETBUvsFXgKetyab7CY5LlWrUFFEz0s2eWlT2qQmacW_d0s9ePC9wxuGeQPDFMU1wVNKJb6FDegcg3c6EUokFUSeFaMKc1nKSlbnf_BlMUlpjYeRhAqKR8W6RbOw3UVYgU_uAOgNDg6-UPAD7w_gswtebZDyBj0rvXIe0AJU9M4vyzYllzIYdAfJLT0KFtVz9Ox0DClHt0OvKusVan0G79VVcWHVJsHk946Lj4f799ljuXiZP83aRakrRnLJe8Wg4YxhDsr03GJjBeW9tZLVFGvRMKNtzTHXDbNMMqhA9H1PBTPUGE7Hxc3JdxfD5x5S7tZhH4cQqaOENA0hrBKDanpSLdUGOudtyFHpYQ1snQ4erBv4VhCKay7w0ZaeHo7pUgTb7aLbqvjdEdwdi-j-KYL-ACuafy0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116611428</pqid></control><display><type>article</type><title>A Comprehensive Review on Conventional and Machine Learning-Assisted Design of 5G Microstrip Patch Antenna</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chhaule, Nupur ; Koley, Chaitali ; Mandal, Sudip ; Onen, Ahmet ; Ustun, Taha Selim</creator><creatorcontrib>Chhaule, Nupur ; Koley, Chaitali ; Mandal, Sudip ; Onen, Ahmet ; Ustun, Taha Selim</creatorcontrib><description>A significant advancement in wireless communication has occurred over the past couple of decades. Nowadays, people rely more on services offered by the Internet of Things, cloud computing, and big data analytics-based applications. Higher data rates, faster transmission/reception times, more coverage, and higher throughputs are all necessary for these emerging applications. 5G technology supports all these features. Antennas, one of the most crucial components of modern wireless gadgets, must be manufactured specifically to meet the market’s growing demand for fast and intelligent goods. This study reviews various 5G antenna types in detail, categorizing them into two categories: conventional design approaches and machine learning-assisted optimization approaches, followed by a comparative study on various 5G antennas reported in publications. Machine learning (ML) is receiving a lot of emphasis because of its ability to identify optimal outcomes in several areas, and it is expected to be a key component of our future technology. ML is demonstrating an evident future in antenna design optimization by predicting antenna behavior and expediting optimization with accuracy and efficiency. The analysis of performance metrics used to evaluate 5G antenna performance is another focus of the assessment. Open research problems are also investigated, allowing researchers to fill up current research gaps.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13193819</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antenna design ; Antennas ; Antennas (Electronics) ; Arrays ; Bandwidths ; Big Data ; Cloud computing ; Comparative studies ; Data analysis ; Design ; Design analysis ; Design optimization ; Internet of Things ; Investigations ; Machine learning ; Optimization techniques ; Patch antennas ; Performance evaluation ; Performance measurement ; Performance prediction ; Radiation ; Systematic review ; Wireless communications</subject><ispartof>Electronics (Basel), 2024-10, Vol.13 (19), p.3819</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-7ba4e674407eadb7f0df837bff94530c864dcf5707c64f494e2e8bbb384d3dd73</cites><orcidid>0000-0001-7086-5112 ; 0000-0002-2413-8421 ; 0000-0003-1884-1193 ; 0009-0007-9312-166X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chhaule, Nupur</creatorcontrib><creatorcontrib>Koley, Chaitali</creatorcontrib><creatorcontrib>Mandal, Sudip</creatorcontrib><creatorcontrib>Onen, Ahmet</creatorcontrib><creatorcontrib>Ustun, Taha Selim</creatorcontrib><title>A Comprehensive Review on Conventional and Machine Learning-Assisted Design of 5G Microstrip Patch Antenna</title><title>Electronics (Basel)</title><description>A significant advancement in wireless communication has occurred over the past couple of decades. Nowadays, people rely more on services offered by the Internet of Things, cloud computing, and big data analytics-based applications. Higher data rates, faster transmission/reception times, more coverage, and higher throughputs are all necessary for these emerging applications. 5G technology supports all these features. Antennas, one of the most crucial components of modern wireless gadgets, must be manufactured specifically to meet the market’s growing demand for fast and intelligent goods. This study reviews various 5G antenna types in detail, categorizing them into two categories: conventional design approaches and machine learning-assisted optimization approaches, followed by a comparative study on various 5G antennas reported in publications. Machine learning (ML) is receiving a lot of emphasis because of its ability to identify optimal outcomes in several areas, and it is expected to be a key component of our future technology. ML is demonstrating an evident future in antenna design optimization by predicting antenna behavior and expediting optimization with accuracy and efficiency. The analysis of performance metrics used to evaluate 5G antenna performance is another focus of the assessment. Open research problems are also investigated, allowing researchers to fill up current research gaps.</description><subject>Antenna design</subject><subject>Antennas</subject><subject>Antennas (Electronics)</subject><subject>Arrays</subject><subject>Bandwidths</subject><subject>Big Data</subject><subject>Cloud computing</subject><subject>Comparative studies</subject><subject>Data analysis</subject><subject>Design</subject><subject>Design analysis</subject><subject>Design optimization</subject><subject>Internet of Things</subject><subject>Investigations</subject><subject>Machine learning</subject><subject>Optimization techniques</subject><subject>Patch antennas</subject><subject>Performance evaluation</subject><subject>Performance measurement</subject><subject>Performance prediction</subject><subject>Radiation</subject><subject>Systematic review</subject><subject>Wireless communications</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUcFKAzEUXETBUvsFXgKetyab7CY5LlWrUFFEz0s2eWlT2qQmacW_d0s9ePC9wxuGeQPDFMU1wVNKJb6FDegcg3c6EUokFUSeFaMKc1nKSlbnf_BlMUlpjYeRhAqKR8W6RbOw3UVYgU_uAOgNDg6-UPAD7w_gswtebZDyBj0rvXIe0AJU9M4vyzYllzIYdAfJLT0KFtVz9Ox0DClHt0OvKusVan0G79VVcWHVJsHk946Lj4f799ljuXiZP83aRakrRnLJe8Wg4YxhDsr03GJjBeW9tZLVFGvRMKNtzTHXDbNMMqhA9H1PBTPUGE7Hxc3JdxfD5x5S7tZhH4cQqaOENA0hrBKDanpSLdUGOudtyFHpYQ1snQ4erBv4VhCKay7w0ZaeHo7pUgTb7aLbqvjdEdwdi-j-KYL-ACuafy0</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Chhaule, Nupur</creator><creator>Koley, Chaitali</creator><creator>Mandal, Sudip</creator><creator>Onen, Ahmet</creator><creator>Ustun, Taha Selim</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7X5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>K6~</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7086-5112</orcidid><orcidid>https://orcid.org/0000-0002-2413-8421</orcidid><orcidid>https://orcid.org/0000-0003-1884-1193</orcidid><orcidid>https://orcid.org/0009-0007-9312-166X</orcidid></search><sort><creationdate>20241001</creationdate><title>A Comprehensive Review on Conventional and Machine Learning-Assisted Design of 5G Microstrip Patch Antenna</title><author>Chhaule, Nupur ; Koley, Chaitali ; Mandal, Sudip ; Onen, Ahmet ; Ustun, Taha Selim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-7ba4e674407eadb7f0df837bff94530c864dcf5707c64f494e2e8bbb384d3dd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antenna design</topic><topic>Antennas</topic><topic>Antennas (Electronics)</topic><topic>Arrays</topic><topic>Bandwidths</topic><topic>Big Data</topic><topic>Cloud computing</topic><topic>Comparative studies</topic><topic>Data analysis</topic><topic>Design</topic><topic>Design analysis</topic><topic>Design optimization</topic><topic>Internet of Things</topic><topic>Investigations</topic><topic>Machine learning</topic><topic>Optimization techniques</topic><topic>Patch antennas</topic><topic>Performance evaluation</topic><topic>Performance measurement</topic><topic>Performance prediction</topic><topic>Radiation</topic><topic>Systematic review</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chhaule, Nupur</creatorcontrib><creatorcontrib>Koley, Chaitali</creatorcontrib><creatorcontrib>Mandal, Sudip</creatorcontrib><creatorcontrib>Onen, Ahmet</creatorcontrib><creatorcontrib>Ustun, Taha Selim</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Entrepreneurship Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chhaule, Nupur</au><au>Koley, Chaitali</au><au>Mandal, Sudip</au><au>Onen, Ahmet</au><au>Ustun, Taha Selim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive Review on Conventional and Machine Learning-Assisted Design of 5G Microstrip Patch Antenna</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>13</volume><issue>19</issue><spage>3819</spage><pages>3819-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>A significant advancement in wireless communication has occurred over the past couple of decades. Nowadays, people rely more on services offered by the Internet of Things, cloud computing, and big data analytics-based applications. Higher data rates, faster transmission/reception times, more coverage, and higher throughputs are all necessary for these emerging applications. 5G technology supports all these features. Antennas, one of the most crucial components of modern wireless gadgets, must be manufactured specifically to meet the market’s growing demand for fast and intelligent goods. This study reviews various 5G antenna types in detail, categorizing them into two categories: conventional design approaches and machine learning-assisted optimization approaches, followed by a comparative study on various 5G antennas reported in publications. Machine learning (ML) is receiving a lot of emphasis because of its ability to identify optimal outcomes in several areas, and it is expected to be a key component of our future technology. ML is demonstrating an evident future in antenna design optimization by predicting antenna behavior and expediting optimization with accuracy and efficiency. The analysis of performance metrics used to evaluate 5G antenna performance is another focus of the assessment. Open research problems are also investigated, allowing researchers to fill up current research gaps.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13193819</doi><orcidid>https://orcid.org/0000-0001-7086-5112</orcidid><orcidid>https://orcid.org/0000-0002-2413-8421</orcidid><orcidid>https://orcid.org/0000-0003-1884-1193</orcidid><orcidid>https://orcid.org/0009-0007-9312-166X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-10, Vol.13 (19), p.3819 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3116611428 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Antenna design Antennas Antennas (Electronics) Arrays Bandwidths Big Data Cloud computing Comparative studies Data analysis Design Design analysis Design optimization Internet of Things Investigations Machine learning Optimization techniques Patch antennas Performance evaluation Performance measurement Performance prediction Radiation Systematic review Wireless communications |
title | A Comprehensive Review on Conventional and Machine Learning-Assisted Design of 5G Microstrip Patch Antenna |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20Review%20on%20Conventional%20and%20Machine%20Learning-Assisted%20Design%20of%205G%20Microstrip%20Patch%20Antenna&rft.jtitle=Electronics%20(Basel)&rft.au=Chhaule,%20Nupur&rft.date=2024-10-01&rft.volume=13&rft.issue=19&rft.spage=3819&rft.pages=3819-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13193819&rft_dat=%3Cgale_proqu%3EA813057807%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116611428&rft_id=info:pmid/&rft_galeid=A813057807&rfr_iscdi=true |