A Comprehensive Review on Conventional and Machine Learning-Assisted Design of 5G Microstrip Patch Antenna

A significant advancement in wireless communication has occurred over the past couple of decades. Nowadays, people rely more on services offered by the Internet of Things, cloud computing, and big data analytics-based applications. Higher data rates, faster transmission/reception times, more coverag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-10, Vol.13 (19), p.3819
Hauptverfasser: Chhaule, Nupur, Koley, Chaitali, Mandal, Sudip, Onen, Ahmet, Ustun, Taha Selim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page 3819
container_title Electronics (Basel)
container_volume 13
creator Chhaule, Nupur
Koley, Chaitali
Mandal, Sudip
Onen, Ahmet
Ustun, Taha Selim
description A significant advancement in wireless communication has occurred over the past couple of decades. Nowadays, people rely more on services offered by the Internet of Things, cloud computing, and big data analytics-based applications. Higher data rates, faster transmission/reception times, more coverage, and higher throughputs are all necessary for these emerging applications. 5G technology supports all these features. Antennas, one of the most crucial components of modern wireless gadgets, must be manufactured specifically to meet the market’s growing demand for fast and intelligent goods. This study reviews various 5G antenna types in detail, categorizing them into two categories: conventional design approaches and machine learning-assisted optimization approaches, followed by a comparative study on various 5G antennas reported in publications. Machine learning (ML) is receiving a lot of emphasis because of its ability to identify optimal outcomes in several areas, and it is expected to be a key component of our future technology. ML is demonstrating an evident future in antenna design optimization by predicting antenna behavior and expediting optimization with accuracy and efficiency. The analysis of performance metrics used to evaluate 5G antenna performance is another focus of the assessment. Open research problems are also investigated, allowing researchers to fill up current research gaps.
doi_str_mv 10.3390/electronics13193819
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3116611428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A813057807</galeid><sourcerecordid>A813057807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-7ba4e674407eadb7f0df837bff94530c864dcf5707c64f494e2e8bbb384d3dd73</originalsourceid><addsrcrecordid>eNptUcFKAzEUXETBUvsFXgKetyab7CY5LlWrUFFEz0s2eWlT2qQmacW_d0s9ePC9wxuGeQPDFMU1wVNKJb6FDegcg3c6EUokFUSeFaMKc1nKSlbnf_BlMUlpjYeRhAqKR8W6RbOw3UVYgU_uAOgNDg6-UPAD7w_gswtebZDyBj0rvXIe0AJU9M4vyzYllzIYdAfJLT0KFtVz9Ox0DClHt0OvKusVan0G79VVcWHVJsHk946Lj4f799ljuXiZP83aRakrRnLJe8Wg4YxhDsr03GJjBeW9tZLVFGvRMKNtzTHXDbNMMqhA9H1PBTPUGE7Hxc3JdxfD5x5S7tZhH4cQqaOENA0hrBKDanpSLdUGOudtyFHpYQ1snQ4erBv4VhCKay7w0ZaeHo7pUgTb7aLbqvjdEdwdi-j-KYL-ACuafy0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116611428</pqid></control><display><type>article</type><title>A Comprehensive Review on Conventional and Machine Learning-Assisted Design of 5G Microstrip Patch Antenna</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chhaule, Nupur ; Koley, Chaitali ; Mandal, Sudip ; Onen, Ahmet ; Ustun, Taha Selim</creator><creatorcontrib>Chhaule, Nupur ; Koley, Chaitali ; Mandal, Sudip ; Onen, Ahmet ; Ustun, Taha Selim</creatorcontrib><description>A significant advancement in wireless communication has occurred over the past couple of decades. Nowadays, people rely more on services offered by the Internet of Things, cloud computing, and big data analytics-based applications. Higher data rates, faster transmission/reception times, more coverage, and higher throughputs are all necessary for these emerging applications. 5G technology supports all these features. Antennas, one of the most crucial components of modern wireless gadgets, must be manufactured specifically to meet the market’s growing demand for fast and intelligent goods. This study reviews various 5G antenna types in detail, categorizing them into two categories: conventional design approaches and machine learning-assisted optimization approaches, followed by a comparative study on various 5G antennas reported in publications. Machine learning (ML) is receiving a lot of emphasis because of its ability to identify optimal outcomes in several areas, and it is expected to be a key component of our future technology. ML is demonstrating an evident future in antenna design optimization by predicting antenna behavior and expediting optimization with accuracy and efficiency. The analysis of performance metrics used to evaluate 5G antenna performance is another focus of the assessment. Open research problems are also investigated, allowing researchers to fill up current research gaps.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13193819</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antenna design ; Antennas ; Antennas (Electronics) ; Arrays ; Bandwidths ; Big Data ; Cloud computing ; Comparative studies ; Data analysis ; Design ; Design analysis ; Design optimization ; Internet of Things ; Investigations ; Machine learning ; Optimization techniques ; Patch antennas ; Performance evaluation ; Performance measurement ; Performance prediction ; Radiation ; Systematic review ; Wireless communications</subject><ispartof>Electronics (Basel), 2024-10, Vol.13 (19), p.3819</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-7ba4e674407eadb7f0df837bff94530c864dcf5707c64f494e2e8bbb384d3dd73</cites><orcidid>0000-0001-7086-5112 ; 0000-0002-2413-8421 ; 0000-0003-1884-1193 ; 0009-0007-9312-166X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chhaule, Nupur</creatorcontrib><creatorcontrib>Koley, Chaitali</creatorcontrib><creatorcontrib>Mandal, Sudip</creatorcontrib><creatorcontrib>Onen, Ahmet</creatorcontrib><creatorcontrib>Ustun, Taha Selim</creatorcontrib><title>A Comprehensive Review on Conventional and Machine Learning-Assisted Design of 5G Microstrip Patch Antenna</title><title>Electronics (Basel)</title><description>A significant advancement in wireless communication has occurred over the past couple of decades. Nowadays, people rely more on services offered by the Internet of Things, cloud computing, and big data analytics-based applications. Higher data rates, faster transmission/reception times, more coverage, and higher throughputs are all necessary for these emerging applications. 5G technology supports all these features. Antennas, one of the most crucial components of modern wireless gadgets, must be manufactured specifically to meet the market’s growing demand for fast and intelligent goods. This study reviews various 5G antenna types in detail, categorizing them into two categories: conventional design approaches and machine learning-assisted optimization approaches, followed by a comparative study on various 5G antennas reported in publications. Machine learning (ML) is receiving a lot of emphasis because of its ability to identify optimal outcomes in several areas, and it is expected to be a key component of our future technology. ML is demonstrating an evident future in antenna design optimization by predicting antenna behavior and expediting optimization with accuracy and efficiency. The analysis of performance metrics used to evaluate 5G antenna performance is another focus of the assessment. Open research problems are also investigated, allowing researchers to fill up current research gaps.</description><subject>Antenna design</subject><subject>Antennas</subject><subject>Antennas (Electronics)</subject><subject>Arrays</subject><subject>Bandwidths</subject><subject>Big Data</subject><subject>Cloud computing</subject><subject>Comparative studies</subject><subject>Data analysis</subject><subject>Design</subject><subject>Design analysis</subject><subject>Design optimization</subject><subject>Internet of Things</subject><subject>Investigations</subject><subject>Machine learning</subject><subject>Optimization techniques</subject><subject>Patch antennas</subject><subject>Performance evaluation</subject><subject>Performance measurement</subject><subject>Performance prediction</subject><subject>Radiation</subject><subject>Systematic review</subject><subject>Wireless communications</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUcFKAzEUXETBUvsFXgKetyab7CY5LlWrUFFEz0s2eWlT2qQmacW_d0s9ePC9wxuGeQPDFMU1wVNKJb6FDegcg3c6EUokFUSeFaMKc1nKSlbnf_BlMUlpjYeRhAqKR8W6RbOw3UVYgU_uAOgNDg6-UPAD7w_gswtebZDyBj0rvXIe0AJU9M4vyzYllzIYdAfJLT0KFtVz9Ox0DClHt0OvKusVan0G79VVcWHVJsHk946Lj4f799ljuXiZP83aRakrRnLJe8Wg4YxhDsr03GJjBeW9tZLVFGvRMKNtzTHXDbNMMqhA9H1PBTPUGE7Hxc3JdxfD5x5S7tZhH4cQqaOENA0hrBKDanpSLdUGOudtyFHpYQ1snQ4erBv4VhCKay7w0ZaeHo7pUgTb7aLbqvjdEdwdi-j-KYL-ACuafy0</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Chhaule, Nupur</creator><creator>Koley, Chaitali</creator><creator>Mandal, Sudip</creator><creator>Onen, Ahmet</creator><creator>Ustun, Taha Selim</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7X5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>K6~</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7086-5112</orcidid><orcidid>https://orcid.org/0000-0002-2413-8421</orcidid><orcidid>https://orcid.org/0000-0003-1884-1193</orcidid><orcidid>https://orcid.org/0009-0007-9312-166X</orcidid></search><sort><creationdate>20241001</creationdate><title>A Comprehensive Review on Conventional and Machine Learning-Assisted Design of 5G Microstrip Patch Antenna</title><author>Chhaule, Nupur ; Koley, Chaitali ; Mandal, Sudip ; Onen, Ahmet ; Ustun, Taha Selim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-7ba4e674407eadb7f0df837bff94530c864dcf5707c64f494e2e8bbb384d3dd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antenna design</topic><topic>Antennas</topic><topic>Antennas (Electronics)</topic><topic>Arrays</topic><topic>Bandwidths</topic><topic>Big Data</topic><topic>Cloud computing</topic><topic>Comparative studies</topic><topic>Data analysis</topic><topic>Design</topic><topic>Design analysis</topic><topic>Design optimization</topic><topic>Internet of Things</topic><topic>Investigations</topic><topic>Machine learning</topic><topic>Optimization techniques</topic><topic>Patch antennas</topic><topic>Performance evaluation</topic><topic>Performance measurement</topic><topic>Performance prediction</topic><topic>Radiation</topic><topic>Systematic review</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chhaule, Nupur</creatorcontrib><creatorcontrib>Koley, Chaitali</creatorcontrib><creatorcontrib>Mandal, Sudip</creatorcontrib><creatorcontrib>Onen, Ahmet</creatorcontrib><creatorcontrib>Ustun, Taha Selim</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Entrepreneurship Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chhaule, Nupur</au><au>Koley, Chaitali</au><au>Mandal, Sudip</au><au>Onen, Ahmet</au><au>Ustun, Taha Selim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive Review on Conventional and Machine Learning-Assisted Design of 5G Microstrip Patch Antenna</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>13</volume><issue>19</issue><spage>3819</spage><pages>3819-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>A significant advancement in wireless communication has occurred over the past couple of decades. Nowadays, people rely more on services offered by the Internet of Things, cloud computing, and big data analytics-based applications. Higher data rates, faster transmission/reception times, more coverage, and higher throughputs are all necessary for these emerging applications. 5G technology supports all these features. Antennas, one of the most crucial components of modern wireless gadgets, must be manufactured specifically to meet the market’s growing demand for fast and intelligent goods. This study reviews various 5G antenna types in detail, categorizing them into two categories: conventional design approaches and machine learning-assisted optimization approaches, followed by a comparative study on various 5G antennas reported in publications. Machine learning (ML) is receiving a lot of emphasis because of its ability to identify optimal outcomes in several areas, and it is expected to be a key component of our future technology. ML is demonstrating an evident future in antenna design optimization by predicting antenna behavior and expediting optimization with accuracy and efficiency. The analysis of performance metrics used to evaluate 5G antenna performance is another focus of the assessment. Open research problems are also investigated, allowing researchers to fill up current research gaps.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13193819</doi><orcidid>https://orcid.org/0000-0001-7086-5112</orcidid><orcidid>https://orcid.org/0000-0002-2413-8421</orcidid><orcidid>https://orcid.org/0000-0003-1884-1193</orcidid><orcidid>https://orcid.org/0009-0007-9312-166X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-10, Vol.13 (19), p.3819
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3116611428
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Antenna design
Antennas
Antennas (Electronics)
Arrays
Bandwidths
Big Data
Cloud computing
Comparative studies
Data analysis
Design
Design analysis
Design optimization
Internet of Things
Investigations
Machine learning
Optimization techniques
Patch antennas
Performance evaluation
Performance measurement
Performance prediction
Radiation
Systematic review
Wireless communications
title A Comprehensive Review on Conventional and Machine Learning-Assisted Design of 5G Microstrip Patch Antenna
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20Review%20on%20Conventional%20and%20Machine%20Learning-Assisted%20Design%20of%205G%20Microstrip%20Patch%20Antenna&rft.jtitle=Electronics%20(Basel)&rft.au=Chhaule,%20Nupur&rft.date=2024-10-01&rft.volume=13&rft.issue=19&rft.spage=3819&rft.pages=3819-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13193819&rft_dat=%3Cgale_proqu%3EA813057807%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116611428&rft_id=info:pmid/&rft_galeid=A813057807&rfr_iscdi=true