Cable Insulation Defect Prediction Based on Harmonic Anomaly Feature Analysis
With the increasing demand for power supply reliability, online monitoring techniques for cable health condition assessments are gaining more attention. Most prevailing techniques lack the sensitivity needed to detect minor insulation defects. A new monitoring technique based on the harmonic anomaly...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-10, Vol.13 (19), p.3807 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 3807 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Wang, Yuli Xu, Haisong Wang, Anzhe Huang, Kaiwen Wang, Ge Lu, Xu Zhang, Daning |
description | With the increasing demand for power supply reliability, online monitoring techniques for cable health condition assessments are gaining more attention. Most prevailing techniques lack the sensitivity needed to detect minor insulation defects. A new monitoring technique based on the harmonic anomaly feature analysis of the shield-to-ground current is introduced in this paper. The sensor installation and data acquisition are convenient and intrinsically safe, which makes it a preferred online monitoring technique. This study focuses on the single-core 10 kV distribution cable type. The research work includes the theoretical analysis of the cable defect’s impact on the current harmonic features, which are then demonstrated by simulation and lab experiments. It has been found that cable insulation defects cause magnetic field distortion, which introduces various harmonic current components, principally, the third-, fifth-, and seventh-order harmonic. The harmonic anomaly features are load current-, defect type-, and aging time-dependent. The K-means algorithm was selected as the data analysis algorithm and was used to achieve insulation defect prediction. The research outcome establishes a solid basis for the field application of the shield-to-ground harmonic current monitoring technique. |
doi_str_mv | 10.3390/electronics13193807 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3116607829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A813057795</galeid><sourcerecordid>A813057795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-a99668e1efcd246e4a392e4b352ad1238dc13c6df609a723217dcba27027d9343</originalsourceid><addsrcrecordid>eNptUMFOwzAMjRBITGNfwKUS540k7prmOAZjk4bgAOfKS1yUqW1G0h7292SMAwfsg9978rMtM3Yr-AxA83tqyPTBd85EAUJDydUFG0mu9FRLLS__4Gs2iXHPU2gBJfARe1nirqFs08Whwd75LnukOs3L3gJZZ36UB4xkswTWGNrTnmzR-RabY7Yi7IdAiScWXbxhVzU2kSa_dcw-Vk_vy_V0-_q8WS62UyNz0U9R66IoSVBtrMwLyhG0pHwHc4lWSCitEWAKWxdco5IghbJmh1JxqayGHMbs7jz3EPzXQLGv9n4I6YhYgRBFwVUpdeqanbs-saHKdbXvA5qUllpnfEe1S_qiFMDnSul5MsDZYIKPMVBdHYJrMRwrwavTr6t_fg3fF35z-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116607829</pqid></control><display><type>article</type><title>Cable Insulation Defect Prediction Based on Harmonic Anomaly Feature Analysis</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Yuli ; Xu, Haisong ; Wang, Anzhe ; Huang, Kaiwen ; Wang, Ge ; Lu, Xu ; Zhang, Daning</creator><creatorcontrib>Wang, Yuli ; Xu, Haisong ; Wang, Anzhe ; Huang, Kaiwen ; Wang, Ge ; Lu, Xu ; Zhang, Daning</creatorcontrib><description>With the increasing demand for power supply reliability, online monitoring techniques for cable health condition assessments are gaining more attention. Most prevailing techniques lack the sensitivity needed to detect minor insulation defects. A new monitoring technique based on the harmonic anomaly feature analysis of the shield-to-ground current is introduced in this paper. The sensor installation and data acquisition are convenient and intrinsically safe, which makes it a preferred online monitoring technique. This study focuses on the single-core 10 kV distribution cable type. The research work includes the theoretical analysis of the cable defect’s impact on the current harmonic features, which are then demonstrated by simulation and lab experiments. It has been found that cable insulation defects cause magnetic field distortion, which introduces various harmonic current components, principally, the third-, fifth-, and seventh-order harmonic. The harmonic anomaly features are load current-, defect type-, and aging time-dependent. The K-means algorithm was selected as the data analysis algorithm and was used to achieve insulation defect prediction. The research outcome establishes a solid basis for the field application of the shield-to-ground harmonic current monitoring technique.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13193807</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Blackouts ; Cables ; Data acquisition ; Data analysis ; Defects ; Demand analysis ; Impact analysis ; Information management ; Insulation ; Intrinsically safe ; Magnetic fields ; Mathematical models ; Permeability ; Polyethylene ; Simulation</subject><ispartof>Electronics (Basel), 2024-10, Vol.13 (19), p.3807</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-a99668e1efcd246e4a392e4b352ad1238dc13c6df609a723217dcba27027d9343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Yuli</creatorcontrib><creatorcontrib>Xu, Haisong</creatorcontrib><creatorcontrib>Wang, Anzhe</creatorcontrib><creatorcontrib>Huang, Kaiwen</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><creatorcontrib>Lu, Xu</creatorcontrib><creatorcontrib>Zhang, Daning</creatorcontrib><title>Cable Insulation Defect Prediction Based on Harmonic Anomaly Feature Analysis</title><title>Electronics (Basel)</title><description>With the increasing demand for power supply reliability, online monitoring techniques for cable health condition assessments are gaining more attention. Most prevailing techniques lack the sensitivity needed to detect minor insulation defects. A new monitoring technique based on the harmonic anomaly feature analysis of the shield-to-ground current is introduced in this paper. The sensor installation and data acquisition are convenient and intrinsically safe, which makes it a preferred online monitoring technique. This study focuses on the single-core 10 kV distribution cable type. The research work includes the theoretical analysis of the cable defect’s impact on the current harmonic features, which are then demonstrated by simulation and lab experiments. It has been found that cable insulation defects cause magnetic field distortion, which introduces various harmonic current components, principally, the third-, fifth-, and seventh-order harmonic. The harmonic anomaly features are load current-, defect type-, and aging time-dependent. The K-means algorithm was selected as the data analysis algorithm and was used to achieve insulation defect prediction. The research outcome establishes a solid basis for the field application of the shield-to-ground harmonic current monitoring technique.</description><subject>Algorithms</subject><subject>Blackouts</subject><subject>Cables</subject><subject>Data acquisition</subject><subject>Data analysis</subject><subject>Defects</subject><subject>Demand analysis</subject><subject>Impact analysis</subject><subject>Information management</subject><subject>Insulation</subject><subject>Intrinsically safe</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Permeability</subject><subject>Polyethylene</subject><subject>Simulation</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUMFOwzAMjRBITGNfwKUS540k7prmOAZjk4bgAOfKS1yUqW1G0h7292SMAwfsg9978rMtM3Yr-AxA83tqyPTBd85EAUJDydUFG0mu9FRLLS__4Gs2iXHPU2gBJfARe1nirqFs08Whwd75LnukOs3L3gJZZ36UB4xkswTWGNrTnmzR-RabY7Yi7IdAiScWXbxhVzU2kSa_dcw-Vk_vy_V0-_q8WS62UyNz0U9R66IoSVBtrMwLyhG0pHwHc4lWSCitEWAKWxdco5IghbJmh1JxqayGHMbs7jz3EPzXQLGv9n4I6YhYgRBFwVUpdeqanbs-saHKdbXvA5qUllpnfEe1S_qiFMDnSul5MsDZYIKPMVBdHYJrMRwrwavTr6t_fg3fF35z-A</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Wang, Yuli</creator><creator>Xu, Haisong</creator><creator>Wang, Anzhe</creator><creator>Huang, Kaiwen</creator><creator>Wang, Ge</creator><creator>Lu, Xu</creator><creator>Zhang, Daning</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20241001</creationdate><title>Cable Insulation Defect Prediction Based on Harmonic Anomaly Feature Analysis</title><author>Wang, Yuli ; Xu, Haisong ; Wang, Anzhe ; Huang, Kaiwen ; Wang, Ge ; Lu, Xu ; Zhang, Daning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-a99668e1efcd246e4a392e4b352ad1238dc13c6df609a723217dcba27027d9343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Blackouts</topic><topic>Cables</topic><topic>Data acquisition</topic><topic>Data analysis</topic><topic>Defects</topic><topic>Demand analysis</topic><topic>Impact analysis</topic><topic>Information management</topic><topic>Insulation</topic><topic>Intrinsically safe</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Permeability</topic><topic>Polyethylene</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuli</creatorcontrib><creatorcontrib>Xu, Haisong</creatorcontrib><creatorcontrib>Wang, Anzhe</creatorcontrib><creatorcontrib>Huang, Kaiwen</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><creatorcontrib>Lu, Xu</creatorcontrib><creatorcontrib>Zhang, Daning</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuli</au><au>Xu, Haisong</au><au>Wang, Anzhe</au><au>Huang, Kaiwen</au><au>Wang, Ge</au><au>Lu, Xu</au><au>Zhang, Daning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cable Insulation Defect Prediction Based on Harmonic Anomaly Feature Analysis</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>13</volume><issue>19</issue><spage>3807</spage><pages>3807-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>With the increasing demand for power supply reliability, online monitoring techniques for cable health condition assessments are gaining more attention. Most prevailing techniques lack the sensitivity needed to detect minor insulation defects. A new monitoring technique based on the harmonic anomaly feature analysis of the shield-to-ground current is introduced in this paper. The sensor installation and data acquisition are convenient and intrinsically safe, which makes it a preferred online monitoring technique. This study focuses on the single-core 10 kV distribution cable type. The research work includes the theoretical analysis of the cable defect’s impact on the current harmonic features, which are then demonstrated by simulation and lab experiments. It has been found that cable insulation defects cause magnetic field distortion, which introduces various harmonic current components, principally, the third-, fifth-, and seventh-order harmonic. The harmonic anomaly features are load current-, defect type-, and aging time-dependent. The K-means algorithm was selected as the data analysis algorithm and was used to achieve insulation defect prediction. The research outcome establishes a solid basis for the field application of the shield-to-ground harmonic current monitoring technique.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13193807</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-10, Vol.13 (19), p.3807 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3116607829 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Blackouts Cables Data acquisition Data analysis Defects Demand analysis Impact analysis Information management Insulation Intrinsically safe Magnetic fields Mathematical models Permeability Polyethylene Simulation |
title | Cable Insulation Defect Prediction Based on Harmonic Anomaly Feature Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cable%20Insulation%20Defect%20Prediction%20Based%20on%20Harmonic%20Anomaly%20Feature%20Analysis&rft.jtitle=Electronics%20(Basel)&rft.au=Wang,%20Yuli&rft.date=2024-10-01&rft.volume=13&rft.issue=19&rft.spage=3807&rft.pages=3807-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13193807&rft_dat=%3Cgale_proqu%3EA813057795%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116607829&rft_id=info:pmid/&rft_galeid=A813057795&rfr_iscdi=true |