Simultaneous Design of Two-stage Gearboxes: An Application of Gravitational Particle Swarm Algorithm

In this paper, we propose a novel gearbox design method called multiple gearbox optimization (MGO), that can simultaneously design multiple patterns of feasible gearboxes. This MGO consists of a penalty handling method and a multimodal optimization method. The handling method converts an existing co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shisutemu Seigyo Jouhou Gakkai rombunshi Control and Information Engineers, 2024/06/15, Vol.37(6), pp.158-166
Hauptverfasser: Yamanaka, Yoshikazu, Wakahara, Satoshi, Yoshida, Katsutoshi
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue 6
container_start_page 158
container_title Shisutemu Seigyo Jouhou Gakkai rombunshi
container_volume 37
creator Yamanaka, Yoshikazu
Wakahara, Satoshi
Yoshida, Katsutoshi
description In this paper, we propose a novel gearbox design method called multiple gearbox optimization (MGO), that can simultaneously design multiple patterns of feasible gearboxes. This MGO consists of a penalty handling method and a multimodal optimization method. The handling method converts an existing constrained gearbox design problem into an unconstrained one. The multimodal optimization method is developed by making our previously proposed gravitational particle swarm algorithm (GPSA) to solve mixed-integer optimization problems. As a result, our MGO successfully obtained an average of 14.18 design patterns in a single run that satisfied all design constraints. Statistical tests indicated that the performance of our MGO was significantly superior to some conventional methods in terms of the number of design patterns and the volume/weight of gearboxes.
doi_str_mv 10.5687/iscie.37.158
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3116529538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116529538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2058-c3611c071ba05c4b806c8360885d0f889730f389da3dfbff6d442d12c81eafbb3</originalsourceid><addsrcrecordid>eNpF0MFKAzEQBuAgChbtzQdY8CZuzWw22elJpGoVCh6s4C0k2aSmtJua7KK-vWtb6mkO880M8xNyAXTEBVY3PhlvR6waAccjMigAeY4A78dkAKwsci4EnpJhSl5TBlUJwPiAXL36dbdqVWNDl7J7m_yiyYLL5l8hT61a2GxqVdTh26ZzcuLUKtnhvp6Rt8eH-eQpn71Mnyd3s9wUlGNumAAwtAKtKDelRioMMkEReU0d4rhi1DEc14rVTjsn6rIsaigMglVOa3ZGLnd7NzF8dja1chm62PQnJQMQvBhzhr263ikTQ0rROrmJfq3ijwQq_wKR20Akq2QfSM9vd3y5_eqAVWy9Wdl_LPYTh475UFHahv0CgthqBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116529538</pqid></control><display><type>article</type><title>Simultaneous Design of Two-stage Gearboxes: An Application of Gravitational Particle Swarm Algorithm</title><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yamanaka, Yoshikazu ; Wakahara, Satoshi ; Yoshida, Katsutoshi</creator><creatorcontrib>Yamanaka, Yoshikazu ; Wakahara, Satoshi ; Yoshida, Katsutoshi</creatorcontrib><description>In this paper, we propose a novel gearbox design method called multiple gearbox optimization (MGO), that can simultaneously design multiple patterns of feasible gearboxes. This MGO consists of a penalty handling method and a multimodal optimization method. The handling method converts an existing constrained gearbox design problem into an unconstrained one. The multimodal optimization method is developed by making our previously proposed gravitational particle swarm algorithm (GPSA) to solve mixed-integer optimization problems. As a result, our MGO successfully obtained an average of 14.18 design patterns in a single run that satisfied all design constraints. Statistical tests indicated that the performance of our MGO was significantly superior to some conventional methods in terms of the number of design patterns and the volume/weight of gearboxes.</description><identifier>ISSN: 1342-5668</identifier><identifier>EISSN: 2185-811X</identifier><identifier>DOI: 10.5687/iscie.37.158</identifier><language>eng ; jpn</language><publisher>Kyoto: THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)</publisher><subject>Algorithms ; Design optimization ; gearbox ; Gearboxes ; Mixed integer ; multimodal optimization ; optimal mechanical design ; Particle swarm optimization ; Statistical methods ; Statistical tests</subject><ispartof>Transactions of the Institute of Systems, Control and Information Engineers, 2024/06/15, Vol.37(6), pp.158-166</ispartof><rights>The Institute of Systems, Control and Information Engineers</rights><rights>Copyright Japan Science and Technology Agency 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2058-c3611c071ba05c4b806c8360885d0f889730f389da3dfbff6d442d12c81eafbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>Yamanaka, Yoshikazu</creatorcontrib><creatorcontrib>Wakahara, Satoshi</creatorcontrib><creatorcontrib>Yoshida, Katsutoshi</creatorcontrib><title>Simultaneous Design of Two-stage Gearboxes: An Application of Gravitational Particle Swarm Algorithm</title><title>Shisutemu Seigyo Jouhou Gakkai rombunshi</title><addtitle>Transactions of the Institute of Systems, Control and Information Engineers</addtitle><description>In this paper, we propose a novel gearbox design method called multiple gearbox optimization (MGO), that can simultaneously design multiple patterns of feasible gearboxes. This MGO consists of a penalty handling method and a multimodal optimization method. The handling method converts an existing constrained gearbox design problem into an unconstrained one. The multimodal optimization method is developed by making our previously proposed gravitational particle swarm algorithm (GPSA) to solve mixed-integer optimization problems. As a result, our MGO successfully obtained an average of 14.18 design patterns in a single run that satisfied all design constraints. Statistical tests indicated that the performance of our MGO was significantly superior to some conventional methods in terms of the number of design patterns and the volume/weight of gearboxes.</description><subject>Algorithms</subject><subject>Design optimization</subject><subject>gearbox</subject><subject>Gearboxes</subject><subject>Mixed integer</subject><subject>multimodal optimization</subject><subject>optimal mechanical design</subject><subject>Particle swarm optimization</subject><subject>Statistical methods</subject><subject>Statistical tests</subject><issn>1342-5668</issn><issn>2185-811X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpF0MFKAzEQBuAgChbtzQdY8CZuzWw22elJpGoVCh6s4C0k2aSmtJua7KK-vWtb6mkO880M8xNyAXTEBVY3PhlvR6waAccjMigAeY4A78dkAKwsci4EnpJhSl5TBlUJwPiAXL36dbdqVWNDl7J7m_yiyYLL5l8hT61a2GxqVdTh26ZzcuLUKtnhvp6Rt8eH-eQpn71Mnyd3s9wUlGNumAAwtAKtKDelRioMMkEReU0d4rhi1DEc14rVTjsn6rIsaigMglVOa3ZGLnd7NzF8dja1chm62PQnJQMQvBhzhr263ikTQ0rROrmJfq3ijwQq_wKR20Akq2QfSM9vd3y5_eqAVWy9Wdl_LPYTh475UFHahv0CgthqBQ</recordid><startdate>20240615</startdate><enddate>20240615</enddate><creator>Yamanaka, Yoshikazu</creator><creator>Wakahara, Satoshi</creator><creator>Yoshida, Katsutoshi</creator><general>THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240615</creationdate><title>Simultaneous Design of Two-stage Gearboxes</title><author>Yamanaka, Yoshikazu ; Wakahara, Satoshi ; Yoshida, Katsutoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2058-c3611c071ba05c4b806c8360885d0f889730f389da3dfbff6d442d12c81eafbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Design optimization</topic><topic>gearbox</topic><topic>Gearboxes</topic><topic>Mixed integer</topic><topic>multimodal optimization</topic><topic>optimal mechanical design</topic><topic>Particle swarm optimization</topic><topic>Statistical methods</topic><topic>Statistical tests</topic><toplevel>online_resources</toplevel><creatorcontrib>Yamanaka, Yoshikazu</creatorcontrib><creatorcontrib>Wakahara, Satoshi</creatorcontrib><creatorcontrib>Yoshida, Katsutoshi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Shisutemu Seigyo Jouhou Gakkai rombunshi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamanaka, Yoshikazu</au><au>Wakahara, Satoshi</au><au>Yoshida, Katsutoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Design of Two-stage Gearboxes: An Application of Gravitational Particle Swarm Algorithm</atitle><jtitle>Shisutemu Seigyo Jouhou Gakkai rombunshi</jtitle><addtitle>Transactions of the Institute of Systems, Control and Information Engineers</addtitle><date>2024-06-15</date><risdate>2024</risdate><volume>37</volume><issue>6</issue><spage>158</spage><epage>166</epage><pages>158-166</pages><issn>1342-5668</issn><eissn>2185-811X</eissn><abstract>In this paper, we propose a novel gearbox design method called multiple gearbox optimization (MGO), that can simultaneously design multiple patterns of feasible gearboxes. This MGO consists of a penalty handling method and a multimodal optimization method. The handling method converts an existing constrained gearbox design problem into an unconstrained one. The multimodal optimization method is developed by making our previously proposed gravitational particle swarm algorithm (GPSA) to solve mixed-integer optimization problems. As a result, our MGO successfully obtained an average of 14.18 design patterns in a single run that satisfied all design constraints. Statistical tests indicated that the performance of our MGO was significantly superior to some conventional methods in terms of the number of design patterns and the volume/weight of gearboxes.</abstract><cop>Kyoto</cop><pub>THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)</pub><doi>10.5687/iscie.37.158</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1342-5668
ispartof Transactions of the Institute of Systems, Control and Information Engineers, 2024/06/15, Vol.37(6), pp.158-166
issn 1342-5668
2185-811X
language eng ; jpn
recordid cdi_proquest_journals_3116529538
source J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Design optimization
gearbox
Gearboxes
Mixed integer
multimodal optimization
optimal mechanical design
Particle swarm optimization
Statistical methods
Statistical tests
title Simultaneous Design of Two-stage Gearboxes: An Application of Gravitational Particle Swarm Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Design%20of%20Two-stage%20Gearboxes:%20An%20Application%20of%20Gravitational%20Particle%20Swarm%20Algorithm&rft.jtitle=Shisutemu%20Seigyo%20Jouhou%20Gakkai%20rombunshi&rft.au=Yamanaka,%20Yoshikazu&rft.date=2024-06-15&rft.volume=37&rft.issue=6&rft.spage=158&rft.epage=166&rft.pages=158-166&rft.issn=1342-5668&rft.eissn=2185-811X&rft_id=info:doi/10.5687/iscie.37.158&rft_dat=%3Cproquest_cross%3E3116529538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116529538&rft_id=info:pmid/&rfr_iscdi=true