Chinese Spelling Correction Based on Knowledge Enhancement and Contrastive Learning

Chinese Spelling Correction (CSC) is an important natural language processing task. Existing methods for CSC mostly utilize BERT models, which select a character from a candidate list to correct errors in the sentence. World knowledge refers to structured information and relationships spanning a wid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2024/09/01, Vol.E107.D(9), pp.1264-1273
Hauptverfasser: WANG, Hao, MA, Yao, DUAN, Jianyong, HE, Li, LI, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1273
container_issue 9
container_start_page 1264
container_title IEICE Transactions on Information and Systems
container_volume E107.D
creator WANG, Hao
MA, Yao
DUAN, Jianyong
HE, Li
LI, Xin
description Chinese Spelling Correction (CSC) is an important natural language processing task. Existing methods for CSC mostly utilize BERT models, which select a character from a candidate list to correct errors in the sentence. World knowledge refers to structured information and relationships spanning a wide range of domains and subjects, while definition knowledge pertains to textual explanations or descriptions of specific words or concepts. Both forms of knowledge have the potential to enhance a model's ability to comprehend contextual nuances. As BERT lacks sufficient guidance from world knowledge for error correction and existing models overlook the rich definition knowledge in Chinese dictionaries, the performance of spelling correction models is somewhat compromised. To address these issues, within the world knowledge network, this study injects world knowledge from knowledge graphs into the model to assist in correcting spelling errors caused by a lack of world knowledge. Additionally, the definition knowledge network in this model improves the error correction capability by utilizing the definitions from the Chinese dictionary through a comparative learning approach. Experimental results on the SIGHAN benchmark dataset validate the effectiveness of our approach.
doi_str_mv 10.1587/transinf.2023EDP7166
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3116527279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116527279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-18e941871364bfe8705e3ca36c9b5dae3eb45582873cf13615c1f48dd57dc10b3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqXwBhwicQ544zh2jpCWH1EJROFsOc6mTZU6xXZBvD2pSktPO4dvZneHkEug18CluAlOW9_Y-jqhCRuPXgVk2REZgEh5DCyDYzKgOWSx5Cw5JWfeLygFmQAfkGkxbyx6jKYrbNvGzqKicw5NaDob3WmPVdSLZ9t9t1jNMBrbubYGl2hDpG3V07bf7kPzhdEEtbN9xDk5qXXr8eJvDsnH_fi9eIwnLw9Pxe0kNilNQgwS8xSk6C9MyxqloByZ0SwzeckrjQzLlHOZSMFMvXmDG6hTWVVcVAZoyYbkapu7ct3nGn1Qi27tbL9SMYCMJyIReU-lW8q4znuHtVq5ZqndjwKqNvWpXX3qoL7e9ra1LXzQM9ybtAuNafHfNAYq1EjlO3EQsofNXDuFlv0CbN6Crg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116527279</pqid></control><display><type>article</type><title>Chinese Spelling Correction Based on Knowledge Enhancement and Contrastive Learning</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>WANG, Hao ; MA, Yao ; DUAN, Jianyong ; HE, Li ; LI, Xin</creator><creatorcontrib>WANG, Hao ; MA, Yao ; DUAN, Jianyong ; HE, Li ; LI, Xin</creatorcontrib><description>Chinese Spelling Correction (CSC) is an important natural language processing task. Existing methods for CSC mostly utilize BERT models, which select a character from a candidate list to correct errors in the sentence. World knowledge refers to structured information and relationships spanning a wide range of domains and subjects, while definition knowledge pertains to textual explanations or descriptions of specific words or concepts. Both forms of knowledge have the potential to enhance a model's ability to comprehend contextual nuances. As BERT lacks sufficient guidance from world knowledge for error correction and existing models overlook the rich definition knowledge in Chinese dictionaries, the performance of spelling correction models is somewhat compromised. To address these issues, within the world knowledge network, this study injects world knowledge from knowledge graphs into the model to assist in correcting spelling errors caused by a lack of world knowledge. Additionally, the definition knowledge network in this model improves the error correction capability by utilizing the definitions from the Chinese dictionary through a comparative learning approach. Experimental results on the SIGHAN benchmark dataset validate the effectiveness of our approach.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2023EDP7166</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Chinese spelling correction ; contrastive learning ; definition knowledge ; Dictionaries ; Error analysis ; Error correction ; Error correction &amp; detection ; Knowledge ; knowledge graph ; Knowledge representation ; Learning ; Natural language processing ; world knowledge</subject><ispartof>IEICE Transactions on Information and Systems, 2024/09/01, Vol.E107.D(9), pp.1264-1273</ispartof><rights>2024 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c402t-18e941871364bfe8705e3ca36c9b5dae3eb45582873cf13615c1f48dd57dc10b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>WANG, Hao</creatorcontrib><creatorcontrib>MA, Yao</creatorcontrib><creatorcontrib>DUAN, Jianyong</creatorcontrib><creatorcontrib>HE, Li</creatorcontrib><creatorcontrib>LI, Xin</creatorcontrib><title>Chinese Spelling Correction Based on Knowledge Enhancement and Contrastive Learning</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><description>Chinese Spelling Correction (CSC) is an important natural language processing task. Existing methods for CSC mostly utilize BERT models, which select a character from a candidate list to correct errors in the sentence. World knowledge refers to structured information and relationships spanning a wide range of domains and subjects, while definition knowledge pertains to textual explanations or descriptions of specific words or concepts. Both forms of knowledge have the potential to enhance a model's ability to comprehend contextual nuances. As BERT lacks sufficient guidance from world knowledge for error correction and existing models overlook the rich definition knowledge in Chinese dictionaries, the performance of spelling correction models is somewhat compromised. To address these issues, within the world knowledge network, this study injects world knowledge from knowledge graphs into the model to assist in correcting spelling errors caused by a lack of world knowledge. Additionally, the definition knowledge network in this model improves the error correction capability by utilizing the definitions from the Chinese dictionary through a comparative learning approach. Experimental results on the SIGHAN benchmark dataset validate the effectiveness of our approach.</description><subject>Chinese spelling correction</subject><subject>contrastive learning</subject><subject>definition knowledge</subject><subject>Dictionaries</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Error correction &amp; detection</subject><subject>Knowledge</subject><subject>knowledge graph</subject><subject>Knowledge representation</subject><subject>Learning</subject><subject>Natural language processing</subject><subject>world knowledge</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EEqXwBhwicQ544zh2jpCWH1EJROFsOc6mTZU6xXZBvD2pSktPO4dvZneHkEug18CluAlOW9_Y-jqhCRuPXgVk2REZgEh5DCyDYzKgOWSx5Cw5JWfeLygFmQAfkGkxbyx6jKYrbNvGzqKicw5NaDob3WmPVdSLZ9t9t1jNMBrbubYGl2hDpG3V07bf7kPzhdEEtbN9xDk5qXXr8eJvDsnH_fi9eIwnLw9Pxe0kNilNQgwS8xSk6C9MyxqloByZ0SwzeckrjQzLlHOZSMFMvXmDG6hTWVVcVAZoyYbkapu7ct3nGn1Qi27tbL9SMYCMJyIReU-lW8q4znuHtVq5ZqndjwKqNvWpXX3qoL7e9ra1LXzQM9ybtAuNafHfNAYq1EjlO3EQsofNXDuFlv0CbN6Crg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>WANG, Hao</creator><creator>MA, Yao</creator><creator>DUAN, Jianyong</creator><creator>HE, Li</creator><creator>LI, Xin</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240901</creationdate><title>Chinese Spelling Correction Based on Knowledge Enhancement and Contrastive Learning</title><author>WANG, Hao ; MA, Yao ; DUAN, Jianyong ; HE, Li ; LI, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-18e941871364bfe8705e3ca36c9b5dae3eb45582873cf13615c1f48dd57dc10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chinese spelling correction</topic><topic>contrastive learning</topic><topic>definition knowledge</topic><topic>Dictionaries</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Error correction &amp; detection</topic><topic>Knowledge</topic><topic>knowledge graph</topic><topic>Knowledge representation</topic><topic>Learning</topic><topic>Natural language processing</topic><topic>world knowledge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WANG, Hao</creatorcontrib><creatorcontrib>MA, Yao</creatorcontrib><creatorcontrib>DUAN, Jianyong</creatorcontrib><creatorcontrib>HE, Li</creatorcontrib><creatorcontrib>LI, Xin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WANG, Hao</au><au>MA, Yao</au><au>DUAN, Jianyong</au><au>HE, Li</au><au>LI, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chinese Spelling Correction Based on Knowledge Enhancement and Contrastive Learning</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>E107.D</volume><issue>9</issue><spage>1264</spage><epage>1273</epage><pages>1264-1273</pages><artnum>2023EDP7166</artnum><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Chinese Spelling Correction (CSC) is an important natural language processing task. Existing methods for CSC mostly utilize BERT models, which select a character from a candidate list to correct errors in the sentence. World knowledge refers to structured information and relationships spanning a wide range of domains and subjects, while definition knowledge pertains to textual explanations or descriptions of specific words or concepts. Both forms of knowledge have the potential to enhance a model's ability to comprehend contextual nuances. As BERT lacks sufficient guidance from world knowledge for error correction and existing models overlook the rich definition knowledge in Chinese dictionaries, the performance of spelling correction models is somewhat compromised. To address these issues, within the world knowledge network, this study injects world knowledge from knowledge graphs into the model to assist in correcting spelling errors caused by a lack of world knowledge. Additionally, the definition knowledge network in this model improves the error correction capability by utilizing the definitions from the Chinese dictionary through a comparative learning approach. Experimental results on the SIGHAN benchmark dataset validate the effectiveness of our approach.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2023EDP7166</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8532
ispartof IEICE Transactions on Information and Systems, 2024/09/01, Vol.E107.D(9), pp.1264-1273
issn 0916-8532
1745-1361
language eng
recordid cdi_proquest_journals_3116527279
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects Chinese spelling correction
contrastive learning
definition knowledge
Dictionaries
Error analysis
Error correction
Error correction & detection
Knowledge
knowledge graph
Knowledge representation
Learning
Natural language processing
world knowledge
title Chinese Spelling Correction Based on Knowledge Enhancement and Contrastive Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chinese%20Spelling%20Correction%20Based%20on%20Knowledge%20Enhancement%20and%20Contrastive%20Learning&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=WANG,%20Hao&rft.date=2024-09-01&rft.volume=E107.D&rft.issue=9&rft.spage=1264&rft.epage=1273&rft.pages=1264-1273&rft.artnum=2023EDP7166&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2023EDP7166&rft_dat=%3Cproquest_cross%3E3116527279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116527279&rft_id=info:pmid/&rfr_iscdi=true