Chinese Spelling Correction Based on Knowledge Enhancement and Contrastive Learning
Chinese Spelling Correction (CSC) is an important natural language processing task. Existing methods for CSC mostly utilize BERT models, which select a character from a candidate list to correct errors in the sentence. World knowledge refers to structured information and relationships spanning a wid...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2024/09/01, Vol.E107.D(9), pp.1264-1273 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1273 |
---|---|
container_issue | 9 |
container_start_page | 1264 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E107.D |
creator | WANG, Hao MA, Yao DUAN, Jianyong HE, Li LI, Xin |
description | Chinese Spelling Correction (CSC) is an important natural language processing task. Existing methods for CSC mostly utilize BERT models, which select a character from a candidate list to correct errors in the sentence. World knowledge refers to structured information and relationships spanning a wide range of domains and subjects, while definition knowledge pertains to textual explanations or descriptions of specific words or concepts. Both forms of knowledge have the potential to enhance a model's ability to comprehend contextual nuances. As BERT lacks sufficient guidance from world knowledge for error correction and existing models overlook the rich definition knowledge in Chinese dictionaries, the performance of spelling correction models is somewhat compromised. To address these issues, within the world knowledge network, this study injects world knowledge from knowledge graphs into the model to assist in correcting spelling errors caused by a lack of world knowledge. Additionally, the definition knowledge network in this model improves the error correction capability by utilizing the definitions from the Chinese dictionary through a comparative learning approach. Experimental results on the SIGHAN benchmark dataset validate the effectiveness of our approach. |
doi_str_mv | 10.1587/transinf.2023EDP7166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3116527279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116527279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-18e941871364bfe8705e3ca36c9b5dae3eb45582873cf13615c1f48dd57dc10b3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqXwBhwicQ544zh2jpCWH1EJROFsOc6mTZU6xXZBvD2pSktPO4dvZneHkEug18CluAlOW9_Y-jqhCRuPXgVk2REZgEh5DCyDYzKgOWSx5Cw5JWfeLygFmQAfkGkxbyx6jKYrbNvGzqKicw5NaDob3WmPVdSLZ9t9t1jNMBrbubYGl2hDpG3V07bf7kPzhdEEtbN9xDk5qXXr8eJvDsnH_fi9eIwnLw9Pxe0kNilNQgwS8xSk6C9MyxqloByZ0SwzeckrjQzLlHOZSMFMvXmDG6hTWVVcVAZoyYbkapu7ct3nGn1Qi27tbL9SMYCMJyIReU-lW8q4znuHtVq5ZqndjwKqNvWpXX3qoL7e9ra1LXzQM9ybtAuNafHfNAYq1EjlO3EQsofNXDuFlv0CbN6Crg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116527279</pqid></control><display><type>article</type><title>Chinese Spelling Correction Based on Knowledge Enhancement and Contrastive Learning</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>WANG, Hao ; MA, Yao ; DUAN, Jianyong ; HE, Li ; LI, Xin</creator><creatorcontrib>WANG, Hao ; MA, Yao ; DUAN, Jianyong ; HE, Li ; LI, Xin</creatorcontrib><description>Chinese Spelling Correction (CSC) is an important natural language processing task. Existing methods for CSC mostly utilize BERT models, which select a character from a candidate list to correct errors in the sentence. World knowledge refers to structured information and relationships spanning a wide range of domains and subjects, while definition knowledge pertains to textual explanations or descriptions of specific words or concepts. Both forms of knowledge have the potential to enhance a model's ability to comprehend contextual nuances. As BERT lacks sufficient guidance from world knowledge for error correction and existing models overlook the rich definition knowledge in Chinese dictionaries, the performance of spelling correction models is somewhat compromised. To address these issues, within the world knowledge network, this study injects world knowledge from knowledge graphs into the model to assist in correcting spelling errors caused by a lack of world knowledge. Additionally, the definition knowledge network in this model improves the error correction capability by utilizing the definitions from the Chinese dictionary through a comparative learning approach. Experimental results on the SIGHAN benchmark dataset validate the effectiveness of our approach.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2023EDP7166</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Chinese spelling correction ; contrastive learning ; definition knowledge ; Dictionaries ; Error analysis ; Error correction ; Error correction & detection ; Knowledge ; knowledge graph ; Knowledge representation ; Learning ; Natural language processing ; world knowledge</subject><ispartof>IEICE Transactions on Information and Systems, 2024/09/01, Vol.E107.D(9), pp.1264-1273</ispartof><rights>2024 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c402t-18e941871364bfe8705e3ca36c9b5dae3eb45582873cf13615c1f48dd57dc10b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>WANG, Hao</creatorcontrib><creatorcontrib>MA, Yao</creatorcontrib><creatorcontrib>DUAN, Jianyong</creatorcontrib><creatorcontrib>HE, Li</creatorcontrib><creatorcontrib>LI, Xin</creatorcontrib><title>Chinese Spelling Correction Based on Knowledge Enhancement and Contrastive Learning</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>Chinese Spelling Correction (CSC) is an important natural language processing task. Existing methods for CSC mostly utilize BERT models, which select a character from a candidate list to correct errors in the sentence. World knowledge refers to structured information and relationships spanning a wide range of domains and subjects, while definition knowledge pertains to textual explanations or descriptions of specific words or concepts. Both forms of knowledge have the potential to enhance a model's ability to comprehend contextual nuances. As BERT lacks sufficient guidance from world knowledge for error correction and existing models overlook the rich definition knowledge in Chinese dictionaries, the performance of spelling correction models is somewhat compromised. To address these issues, within the world knowledge network, this study injects world knowledge from knowledge graphs into the model to assist in correcting spelling errors caused by a lack of world knowledge. Additionally, the definition knowledge network in this model improves the error correction capability by utilizing the definitions from the Chinese dictionary through a comparative learning approach. Experimental results on the SIGHAN benchmark dataset validate the effectiveness of our approach.</description><subject>Chinese spelling correction</subject><subject>contrastive learning</subject><subject>definition knowledge</subject><subject>Dictionaries</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Error correction & detection</subject><subject>Knowledge</subject><subject>knowledge graph</subject><subject>Knowledge representation</subject><subject>Learning</subject><subject>Natural language processing</subject><subject>world knowledge</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EEqXwBhwicQ544zh2jpCWH1EJROFsOc6mTZU6xXZBvD2pSktPO4dvZneHkEug18CluAlOW9_Y-jqhCRuPXgVk2REZgEh5DCyDYzKgOWSx5Cw5JWfeLygFmQAfkGkxbyx6jKYrbNvGzqKicw5NaDob3WmPVdSLZ9t9t1jNMBrbubYGl2hDpG3V07bf7kPzhdEEtbN9xDk5qXXr8eJvDsnH_fi9eIwnLw9Pxe0kNilNQgwS8xSk6C9MyxqloByZ0SwzeckrjQzLlHOZSMFMvXmDG6hTWVVcVAZoyYbkapu7ct3nGn1Qi27tbL9SMYCMJyIReU-lW8q4znuHtVq5ZqndjwKqNvWpXX3qoL7e9ra1LXzQM9ybtAuNafHfNAYq1EjlO3EQsofNXDuFlv0CbN6Crg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>WANG, Hao</creator><creator>MA, Yao</creator><creator>DUAN, Jianyong</creator><creator>HE, Li</creator><creator>LI, Xin</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240901</creationdate><title>Chinese Spelling Correction Based on Knowledge Enhancement and Contrastive Learning</title><author>WANG, Hao ; MA, Yao ; DUAN, Jianyong ; HE, Li ; LI, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-18e941871364bfe8705e3ca36c9b5dae3eb45582873cf13615c1f48dd57dc10b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chinese spelling correction</topic><topic>contrastive learning</topic><topic>definition knowledge</topic><topic>Dictionaries</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Error correction & detection</topic><topic>Knowledge</topic><topic>knowledge graph</topic><topic>Knowledge representation</topic><topic>Learning</topic><topic>Natural language processing</topic><topic>world knowledge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WANG, Hao</creatorcontrib><creatorcontrib>MA, Yao</creatorcontrib><creatorcontrib>DUAN, Jianyong</creatorcontrib><creatorcontrib>HE, Li</creatorcontrib><creatorcontrib>LI, Xin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WANG, Hao</au><au>MA, Yao</au><au>DUAN, Jianyong</au><au>HE, Li</au><au>LI, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chinese Spelling Correction Based on Knowledge Enhancement and Contrastive Learning</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>E107.D</volume><issue>9</issue><spage>1264</spage><epage>1273</epage><pages>1264-1273</pages><artnum>2023EDP7166</artnum><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Chinese Spelling Correction (CSC) is an important natural language processing task. Existing methods for CSC mostly utilize BERT models, which select a character from a candidate list to correct errors in the sentence. World knowledge refers to structured information and relationships spanning a wide range of domains and subjects, while definition knowledge pertains to textual explanations or descriptions of specific words or concepts. Both forms of knowledge have the potential to enhance a model's ability to comprehend contextual nuances. As BERT lacks sufficient guidance from world knowledge for error correction and existing models overlook the rich definition knowledge in Chinese dictionaries, the performance of spelling correction models is somewhat compromised. To address these issues, within the world knowledge network, this study injects world knowledge from knowledge graphs into the model to assist in correcting spelling errors caused by a lack of world knowledge. Additionally, the definition knowledge network in this model improves the error correction capability by utilizing the definitions from the Chinese dictionary through a comparative learning approach. Experimental results on the SIGHAN benchmark dataset validate the effectiveness of our approach.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2023EDP7166</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2024/09/01, Vol.E107.D(9), pp.1264-1273 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_journals_3116527279 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | Chinese spelling correction contrastive learning definition knowledge Dictionaries Error analysis Error correction Error correction & detection Knowledge knowledge graph Knowledge representation Learning Natural language processing world knowledge |
title | Chinese Spelling Correction Based on Knowledge Enhancement and Contrastive Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chinese%20Spelling%20Correction%20Based%20on%20Knowledge%20Enhancement%20and%20Contrastive%20Learning&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=WANG,%20Hao&rft.date=2024-09-01&rft.volume=E107.D&rft.issue=9&rft.spage=1264&rft.epage=1273&rft.pages=1264-1273&rft.artnum=2023EDP7166&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2023EDP7166&rft_dat=%3Cproquest_cross%3E3116527279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116527279&rft_id=info:pmid/&rfr_iscdi=true |