Greedy Selection of Sensors for Linear Bayesian Estimation under Correlated Noise

We consider the problem of finding the best subset of sensors in wireless sensor networks where linear Bayesian parameter estimation is conducted from the selected measurements corrupted by correlated noise. We aim to directly minimize the estimation error which is manipulated by using the QR and LU...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2024/09/01, Vol.E107.D(9), pp.1274-1277
1. Verfasser: KIM, Yoon Hak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1277
container_issue 9
container_start_page 1274
container_title IEICE Transactions on Information and Systems
container_volume E107.D
creator KIM, Yoon Hak
description We consider the problem of finding the best subset of sensors in wireless sensor networks where linear Bayesian parameter estimation is conducted from the selected measurements corrupted by correlated noise. We aim to directly minimize the estimation error which is manipulated by using the QR and LU factorizations. We derive an analytic result which expedites the sensor selection in a greedy manner. We also provide the complexity of the proposed algorithm in comparison with previous selection methods. We evaluate the performance through numerical experiments using random measurements under correlated noise and demonstrate a competitive estimation accuracy of the proposed algorithm with a reasonable increase in complexity as compared with the previous selection methods.
doi_str_mv 10.1587/transinf.2024EDL8024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3116526076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116526076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-c92fd756abf9988bb13f9e60b8fb6d67bc24df9924e2fb995b623baf451b71433</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwBywisQ74nXgJbSlIEYjX2rKTMaQKdrHTRf-eQGnpamY0594ZXYTOCb4koiyu-mh8ar27pJjy2bQqh3KARqTgIidMkkM0worIvBSMHqOTlBYYk5ISMUJP8wjQrLMX6KDu2-Cz4IbBpxBT5kLMqtaDidmNWUNqjc9mqW8_zS-58g3EbBJihM700GQPoU1wio6c6RKc_dUxerudvU7u8upxfj-5rvKaY9rntaKuKYQ01ilVltYS5hRIbEtnZSMLW1PeDCvKgTqrlLCSMmscF8QWhDM2Rhcb32UMXytIvV6EVfTDSc0IkYJKXMiB4huqjiGlCE4v4_B_XGuC9U94ehue3gtvkD1vZIvUm3fYiUzs27qDf9GM4EJPtdo2eyY7uP4wUYNn366rglo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116526076</pqid></control><display><type>article</type><title>Greedy Selection of Sensors for Linear Bayesian Estimation under Correlated Noise</title><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>KIM, Yoon Hak</creator><creatorcontrib>KIM, Yoon Hak</creatorcontrib><description>We consider the problem of finding the best subset of sensors in wireless sensor networks where linear Bayesian parameter estimation is conducted from the selected measurements corrupted by correlated noise. We aim to directly minimize the estimation error which is manipulated by using the QR and LU factorizations. We derive an analytic result which expedites the sensor selection in a greedy manner. We also provide the complexity of the proposed algorithm in comparison with previous selection methods. We evaluate the performance through numerical experiments using random measurements under correlated noise and demonstrate a competitive estimation accuracy of the proposed algorithm with a reasonable increase in complexity as compared with the previous selection methods.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2024EDL8024</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Bayesian analysis ; Complexity ; Correlation ; Error analysis ; greedy algorithm ; Greedy algorithms ; linear Bayesian estimation ; LU factorization ; Parameter estimation ; QR factorization ; sensor selection ; Sensors ; Wireless sensor networks</subject><ispartof>IEICE Transactions on Information and Systems, 2024/09/01, Vol.E107.D(9), pp.1274-1277</ispartof><rights>2024 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c402t-c92fd756abf9988bb13f9e60b8fb6d67bc24df9924e2fb995b623baf451b71433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>KIM, Yoon Hak</creatorcontrib><title>Greedy Selection of Sensors for Linear Bayesian Estimation under Correlated Noise</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><description>We consider the problem of finding the best subset of sensors in wireless sensor networks where linear Bayesian parameter estimation is conducted from the selected measurements corrupted by correlated noise. We aim to directly minimize the estimation error which is manipulated by using the QR and LU factorizations. We derive an analytic result which expedites the sensor selection in a greedy manner. We also provide the complexity of the proposed algorithm in comparison with previous selection methods. We evaluate the performance through numerical experiments using random measurements under correlated noise and demonstrate a competitive estimation accuracy of the proposed algorithm with a reasonable increase in complexity as compared with the previous selection methods.</description><subject>Bayesian analysis</subject><subject>Complexity</subject><subject>Correlation</subject><subject>Error analysis</subject><subject>greedy algorithm</subject><subject>Greedy algorithms</subject><subject>linear Bayesian estimation</subject><subject>LU factorization</subject><subject>Parameter estimation</subject><subject>QR factorization</subject><subject>sensor selection</subject><subject>Sensors</subject><subject>Wireless sensor networks</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEqXwBywisQ74nXgJbSlIEYjX2rKTMaQKdrHTRf-eQGnpamY0594ZXYTOCb4koiyu-mh8ar27pJjy2bQqh3KARqTgIidMkkM0worIvBSMHqOTlBYYk5ISMUJP8wjQrLMX6KDu2-Cz4IbBpxBT5kLMqtaDidmNWUNqjc9mqW8_zS-58g3EbBJihM700GQPoU1wio6c6RKc_dUxerudvU7u8upxfj-5rvKaY9rntaKuKYQ01ilVltYS5hRIbEtnZSMLW1PeDCvKgTqrlLCSMmscF8QWhDM2Rhcb32UMXytIvV6EVfTDSc0IkYJKXMiB4huqjiGlCE4v4_B_XGuC9U94ehue3gtvkD1vZIvUm3fYiUzs27qDf9GM4EJPtdo2eyY7uP4wUYNn366rglo</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>KIM, Yoon Hak</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240901</creationdate><title>Greedy Selection of Sensors for Linear Bayesian Estimation under Correlated Noise</title><author>KIM, Yoon Hak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-c92fd756abf9988bb13f9e60b8fb6d67bc24df9924e2fb995b623baf451b71433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian analysis</topic><topic>Complexity</topic><topic>Correlation</topic><topic>Error analysis</topic><topic>greedy algorithm</topic><topic>Greedy algorithms</topic><topic>linear Bayesian estimation</topic><topic>LU factorization</topic><topic>Parameter estimation</topic><topic>QR factorization</topic><topic>sensor selection</topic><topic>Sensors</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KIM, Yoon Hak</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KIM, Yoon Hak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Greedy Selection of Sensors for Linear Bayesian Estimation under Correlated Noise</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>E107.D</volume><issue>9</issue><spage>1274</spage><epage>1277</epage><pages>1274-1277</pages><artnum>2024EDL8024</artnum><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>We consider the problem of finding the best subset of sensors in wireless sensor networks where linear Bayesian parameter estimation is conducted from the selected measurements corrupted by correlated noise. We aim to directly minimize the estimation error which is manipulated by using the QR and LU factorizations. We derive an analytic result which expedites the sensor selection in a greedy manner. We also provide the complexity of the proposed algorithm in comparison with previous selection methods. We evaluate the performance through numerical experiments using random measurements under correlated noise and demonstrate a competitive estimation accuracy of the proposed algorithm with a reasonable increase in complexity as compared with the previous selection methods.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2024EDL8024</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8532
ispartof IEICE Transactions on Information and Systems, 2024/09/01, Vol.E107.D(9), pp.1274-1277
issn 0916-8532
1745-1361
language eng
recordid cdi_proquest_journals_3116526076
source J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; EZB-FREE-00999 freely available EZB journals
subjects Bayesian analysis
Complexity
Correlation
Error analysis
greedy algorithm
Greedy algorithms
linear Bayesian estimation
LU factorization
Parameter estimation
QR factorization
sensor selection
Sensors
Wireless sensor networks
title Greedy Selection of Sensors for Linear Bayesian Estimation under Correlated Noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Greedy%20Selection%20of%20Sensors%20for%20Linear%20Bayesian%20Estimation%20under%20Correlated%20Noise&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=KIM,%20Yoon%20Hak&rft.date=2024-09-01&rft.volume=E107.D&rft.issue=9&rft.spage=1274&rft.epage=1277&rft.pages=1274-1277&rft.artnum=2024EDL8024&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2024EDL8024&rft_dat=%3Cproquest_cross%3E3116526076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116526076&rft_id=info:pmid/&rfr_iscdi=true