The Radon-Nikodým Theorem and the Lebesgue-Stieltjes Measure in Coq
We are concerned with the formalization of measure theory in the Coq proof assistant. Concretely, we extend MathComp-Analysis, a library for functional analysis built on top of the Mathematical Components library, with standard constructions such as charges and the Lebesgue-Stieltjes measure, and wi...
Gespeichert in:
Veröffentlicht in: | Konpyuta Sofutowea 2024/04/23, Vol.41(2), pp.2_41-2_59 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2_59 |
---|---|
container_issue | 2 |
container_start_page | 2_41 |
container_title | Konpyuta Sofutowea |
container_volume | 41 |
creator | Yoshihiro, ISHIGURO Reynald, AFFELDT |
description | We are concerned with the formalization of measure theory in the Coq proof assistant. Concretely, we extend MathComp-Analysis, a library for functional analysis built on top of the Mathematical Components library, with standard constructions such as charges and the Lebesgue-Stieltjes measure, and with standard theorems such as the Hahn decomposition theorem and the Radon-Nikodým theorem. These are prerequisites for the formalization of probabilistic programs, of probability theory, and also for other applications such as the formalization of connections between derivatives and integrals. |
doi_str_mv | 10.11309/jssst.41.2_41 |
format | Article |
fullrecord | <record><control><sourceid>proquest_jstag</sourceid><recordid>TN_cdi_proquest_journals_3116497445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116497445</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2355-3c5753c97a9e4b12d9a53eba7882ce4f0b068a1a8200e9886e535ef1fd2df2643</originalsourceid><addsrcrecordid>eNo9UDtPwzAY9AASVenKbIk5xe_EG6g8pQISlNn6knxpE5qktZ2BH8fEHyOiwHIn3Z3upCPkjLM555LZiyaEEOeKz4VT_IhMmMhsYrRiJ2QWQp0zxqzhWpkJuV5tkL5A2XfJU_3el1-fLR2l3mNLoStpHO0l5hjWAyavscZtbDDQR4QweKR1Rxf9_pQcV7ANOPvlKXm7vVkt7pPl893D4mqZNEJqnchCp1oWNgWLKueitKAl5pBmmShQVSxnJgMOmWAMbZYZ1FJjxatSlJUwSk7J-aF35_v9gCG6ph98N046yblRNlVKj6nLQ6oJEdbodr5uwX848LEutuh-3hmPceIf_qxiA941IL8Bn-pjoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116497445</pqid></control><display><type>article</type><title>The Radon-Nikodým Theorem and the Lebesgue-Stieltjes Measure in Coq</title><source>J-STAGE Free</source><creator>Yoshihiro, ISHIGURO ; Reynald, AFFELDT</creator><creatorcontrib>Yoshihiro, ISHIGURO ; Reynald, AFFELDT</creatorcontrib><description>We are concerned with the formalization of measure theory in the Coq proof assistant. Concretely, we extend MathComp-Analysis, a library for functional analysis built on top of the Mathematical Components library, with standard constructions such as charges and the Lebesgue-Stieltjes measure, and with standard theorems such as the Hahn decomposition theorem and the Radon-Nikodým theorem. These are prerequisites for the formalization of probabilistic programs, of probability theory, and also for other applications such as the formalization of connections between derivatives and integrals.</description><identifier>ISSN: 0289-6540</identifier><identifier>DOI: 10.11309/jssst.41.2_41</identifier><language>jpn</language><publisher>Tokyo: 日本ソフトウェア科学会</publisher><subject>Functional analysis ; Probability theory ; Radon ; Statistical analysis ; Theorems</subject><ispartof>コンピュータ ソフトウェア, 2024/04/23, Vol.41(2), pp.2_41-2_59</ispartof><rights>2024, 日本ソフトウェア科学会</rights><rights>Copyright Japan Science and Technology Agency 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>Yoshihiro, ISHIGURO</creatorcontrib><creatorcontrib>Reynald, AFFELDT</creatorcontrib><title>The Radon-Nikodým Theorem and the Lebesgue-Stieltjes Measure in Coq</title><title>Konpyuta Sofutowea</title><addtitle>コンピュータ ソフトウェア</addtitle><description>We are concerned with the formalization of measure theory in the Coq proof assistant. Concretely, we extend MathComp-Analysis, a library for functional analysis built on top of the Mathematical Components library, with standard constructions such as charges and the Lebesgue-Stieltjes measure, and with standard theorems such as the Hahn decomposition theorem and the Radon-Nikodým theorem. These are prerequisites for the formalization of probabilistic programs, of probability theory, and also for other applications such as the formalization of connections between derivatives and integrals.</description><subject>Functional analysis</subject><subject>Probability theory</subject><subject>Radon</subject><subject>Statistical analysis</subject><subject>Theorems</subject><issn>0289-6540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UDtPwzAY9AASVenKbIk5xe_EG6g8pQISlNn6knxpE5qktZ2BH8fEHyOiwHIn3Z3upCPkjLM555LZiyaEEOeKz4VT_IhMmMhsYrRiJ2QWQp0zxqzhWpkJuV5tkL5A2XfJU_3el1-fLR2l3mNLoStpHO0l5hjWAyavscZtbDDQR4QweKR1Rxf9_pQcV7ANOPvlKXm7vVkt7pPl893D4mqZNEJqnchCp1oWNgWLKueitKAl5pBmmShQVSxnJgMOmWAMbZYZ1FJjxatSlJUwSk7J-aF35_v9gCG6ph98N046yblRNlVKj6nLQ6oJEdbodr5uwX848LEutuh-3hmPceIf_qxiA941IL8Bn-pjoQ</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Yoshihiro, ISHIGURO</creator><creator>Reynald, AFFELDT</creator><general>日本ソフトウェア科学会</general><general>Japan Science and Technology Agency</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240423</creationdate><title>The Radon-Nikodým Theorem and the Lebesgue-Stieltjes Measure in Coq</title><author>Yoshihiro, ISHIGURO ; Reynald, AFFELDT</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2355-3c5753c97a9e4b12d9a53eba7882ce4f0b068a1a8200e9886e535ef1fd2df2643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>jpn</language><creationdate>2024</creationdate><topic>Functional analysis</topic><topic>Probability theory</topic><topic>Radon</topic><topic>Statistical analysis</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Yoshihiro, ISHIGURO</creatorcontrib><creatorcontrib>Reynald, AFFELDT</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Konpyuta Sofutowea</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshihiro, ISHIGURO</au><au>Reynald, AFFELDT</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Radon-Nikodým Theorem and the Lebesgue-Stieltjes Measure in Coq</atitle><jtitle>Konpyuta Sofutowea</jtitle><addtitle>コンピュータ ソフトウェア</addtitle><date>2024-04-23</date><risdate>2024</risdate><volume>41</volume><issue>2</issue><spage>2_41</spage><epage>2_59</epage><pages>2_41-2_59</pages><issn>0289-6540</issn><abstract>We are concerned with the formalization of measure theory in the Coq proof assistant. Concretely, we extend MathComp-Analysis, a library for functional analysis built on top of the Mathematical Components library, with standard constructions such as charges and the Lebesgue-Stieltjes measure, and with standard theorems such as the Hahn decomposition theorem and the Radon-Nikodým theorem. These are prerequisites for the formalization of probabilistic programs, of probability theory, and also for other applications such as the formalization of connections between derivatives and integrals.</abstract><cop>Tokyo</cop><pub>日本ソフトウェア科学会</pub><doi>10.11309/jssst.41.2_41</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0289-6540 |
ispartof | コンピュータ ソフトウェア, 2024/04/23, Vol.41(2), pp.2_41-2_59 |
issn | 0289-6540 |
language | jpn |
recordid | cdi_proquest_journals_3116497445 |
source | J-STAGE Free |
subjects | Functional analysis Probability theory Radon Statistical analysis Theorems |
title | The Radon-Nikodým Theorem and the Lebesgue-Stieltjes Measure in Coq |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_jstag&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Radon-Nikod%C3%BDm%20Theorem%20and%20the%20Lebesgue-Stieltjes%20Measure%20in%20Coq&rft.jtitle=Konpyuta%20Sofutowea&rft.au=Yoshihiro,%20ISHIGURO&rft.date=2024-04-23&rft.volume=41&rft.issue=2&rft.spage=2_41&rft.epage=2_59&rft.pages=2_41-2_59&rft.issn=0289-6540&rft_id=info:doi/10.11309/jssst.41.2_41&rft_dat=%3Cproquest_jstag%3E3116497445%3C/proquest_jstag%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116497445&rft_id=info:pmid/&rfr_iscdi=true |