DiffGLE: Differentiable Coarse-Grained Dynamics using Generalized Langevin Equation

Capturing the correct dynamics at the Coarse-Grained (CG) scale remains a central challenge in the advancement of systematic CG models for soft matter simulations. The Generalized Langevin Equation (GLE), rooted in the Mori-Zwanzig formalism, provides a robust framework for incorporating friction an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Jeong, Jinu, Nadkarni, Ishan, Aluru, Narayana R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jeong, Jinu
Nadkarni, Ishan
Aluru, Narayana R
description Capturing the correct dynamics at the Coarse-Grained (CG) scale remains a central challenge in the advancement of systematic CG models for soft matter simulations. The Generalized Langevin Equation (GLE), rooted in the Mori-Zwanzig formalism, provides a robust framework for incorporating friction and stochastic forces into CG models, that are lost due to the reduction in degrees of freedom. Leveraging recent advancements in Automatic Differentiation (AD) and reformulating the non-Markovian GLE using a colored noise ansatz, we present a top-down approach for accurately parameterizing the non-Markovian GLE for different coarse-grained fluids that accurately reproduces the velocity-autocorrelation function of the original All-Atom (AA) model. We demonstrate our approach on two different fluids namely, SPC/E water and carbon dioxide which have distinct structure and dynamical characteristics. Importantly, by being end-to-end differentiable, this approach offers a simplified and efficient solution to achieving accurate CG dynamics, effectively bypassing the complexities inherent in most bottom-up methods.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3116446303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116446303</sourcerecordid><originalsourceid>FETCH-proquest_journals_31164463033</originalsourceid><addsrcrecordid>eNqNisEKgkAUAJcgSMp_WOgsrLtq0VXNDt7qHq96yoq9zV03qK_PoA_oNAMzMxZIpeJom0i5YKFznRBCZhuZpipgx0I3TVWXO_4VtEijhkuPPDdgHUaVBU1448WL4K6vjnunqeUVElro9XtKNVCLT028HDyM2tCKzRvoHYY_Ltl6X57yQ_SwZvDoxnNnvKUpnVUcZ0mSKaHUf9cH4tQ_mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116446303</pqid></control><display><type>article</type><title>DiffGLE: Differentiable Coarse-Grained Dynamics using Generalized Langevin Equation</title><source>Free E- Journals</source><creator>Jeong, Jinu ; Nadkarni, Ishan ; Aluru, Narayana R</creator><creatorcontrib>Jeong, Jinu ; Nadkarni, Ishan ; Aluru, Narayana R</creatorcontrib><description>Capturing the correct dynamics at the Coarse-Grained (CG) scale remains a central challenge in the advancement of systematic CG models for soft matter simulations. The Generalized Langevin Equation (GLE), rooted in the Mori-Zwanzig formalism, provides a robust framework for incorporating friction and stochastic forces into CG models, that are lost due to the reduction in degrees of freedom. Leveraging recent advancements in Automatic Differentiation (AD) and reformulating the non-Markovian GLE using a colored noise ansatz, we present a top-down approach for accurately parameterizing the non-Markovian GLE for different coarse-grained fluids that accurately reproduces the velocity-autocorrelation function of the original All-Atom (AA) model. We demonstrate our approach on two different fluids namely, SPC/E water and carbon dioxide which have distinct structure and dynamical characteristics. Importantly, by being end-to-end differentiable, this approach offers a simplified and efficient solution to achieving accurate CG dynamics, effectively bypassing the complexities inherent in most bottom-up methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autocorrelation functions ; Carbon dioxide</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Jeong, Jinu</creatorcontrib><creatorcontrib>Nadkarni, Ishan</creatorcontrib><creatorcontrib>Aluru, Narayana R</creatorcontrib><title>DiffGLE: Differentiable Coarse-Grained Dynamics using Generalized Langevin Equation</title><title>arXiv.org</title><description>Capturing the correct dynamics at the Coarse-Grained (CG) scale remains a central challenge in the advancement of systematic CG models for soft matter simulations. The Generalized Langevin Equation (GLE), rooted in the Mori-Zwanzig formalism, provides a robust framework for incorporating friction and stochastic forces into CG models, that are lost due to the reduction in degrees of freedom. Leveraging recent advancements in Automatic Differentiation (AD) and reformulating the non-Markovian GLE using a colored noise ansatz, we present a top-down approach for accurately parameterizing the non-Markovian GLE for different coarse-grained fluids that accurately reproduces the velocity-autocorrelation function of the original All-Atom (AA) model. We demonstrate our approach on two different fluids namely, SPC/E water and carbon dioxide which have distinct structure and dynamical characteristics. Importantly, by being end-to-end differentiable, this approach offers a simplified and efficient solution to achieving accurate CG dynamics, effectively bypassing the complexities inherent in most bottom-up methods.</description><subject>Autocorrelation functions</subject><subject>Carbon dioxide</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEKgkAUAJcgSMp_WOgsrLtq0VXNDt7qHq96yoq9zV03qK_PoA_oNAMzMxZIpeJom0i5YKFznRBCZhuZpipgx0I3TVWXO_4VtEijhkuPPDdgHUaVBU1448WL4K6vjnunqeUVElro9XtKNVCLT028HDyM2tCKzRvoHYY_Ltl6X57yQ_SwZvDoxnNnvKUpnVUcZ0mSKaHUf9cH4tQ_mw</recordid><startdate>20241011</startdate><enddate>20241011</enddate><creator>Jeong, Jinu</creator><creator>Nadkarni, Ishan</creator><creator>Aluru, Narayana R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241011</creationdate><title>DiffGLE: Differentiable Coarse-Grained Dynamics using Generalized Langevin Equation</title><author>Jeong, Jinu ; Nadkarni, Ishan ; Aluru, Narayana R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31164463033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autocorrelation functions</topic><topic>Carbon dioxide</topic><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Jinu</creatorcontrib><creatorcontrib>Nadkarni, Ishan</creatorcontrib><creatorcontrib>Aluru, Narayana R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Jinu</au><au>Nadkarni, Ishan</au><au>Aluru, Narayana R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DiffGLE: Differentiable Coarse-Grained Dynamics using Generalized Langevin Equation</atitle><jtitle>arXiv.org</jtitle><date>2024-10-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Capturing the correct dynamics at the Coarse-Grained (CG) scale remains a central challenge in the advancement of systematic CG models for soft matter simulations. The Generalized Langevin Equation (GLE), rooted in the Mori-Zwanzig formalism, provides a robust framework for incorporating friction and stochastic forces into CG models, that are lost due to the reduction in degrees of freedom. Leveraging recent advancements in Automatic Differentiation (AD) and reformulating the non-Markovian GLE using a colored noise ansatz, we present a top-down approach for accurately parameterizing the non-Markovian GLE for different coarse-grained fluids that accurately reproduces the velocity-autocorrelation function of the original All-Atom (AA) model. We demonstrate our approach on two different fluids namely, SPC/E water and carbon dioxide which have distinct structure and dynamical characteristics. Importantly, by being end-to-end differentiable, this approach offers a simplified and efficient solution to achieving accurate CG dynamics, effectively bypassing the complexities inherent in most bottom-up methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3116446303
source Free E- Journals
subjects Autocorrelation functions
Carbon dioxide
title DiffGLE: Differentiable Coarse-Grained Dynamics using Generalized Langevin Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DiffGLE:%20Differentiable%20Coarse-Grained%20Dynamics%20using%20Generalized%20Langevin%20Equation&rft.jtitle=arXiv.org&rft.au=Jeong,%20Jinu&rft.date=2024-10-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3116446303%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116446303&rft_id=info:pmid/&rfr_iscdi=true