Twitter‐based uncertainty and stock market returns: Evidence from G7 countries

The aim of this study is to investigate the impact of Twitter‐based economic uncertainty (TEU) and Twitter‐based market uncertainty (TMU) on G7 stock returns in the challenging year in which the COVID‐19 pandemic began (2020) under different stock market conditions (bearish, normal, and bullish). To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of finance and economics 2024-10, Vol.29 (4), p.3840-3860
Hauptverfasser: Coskun, Merve, Taspinar, Nigar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3860
container_issue 4
container_start_page 3840
container_title International journal of finance and economics
container_volume 29
creator Coskun, Merve
Taspinar, Nigar
description The aim of this study is to investigate the impact of Twitter‐based economic uncertainty (TEU) and Twitter‐based market uncertainty (TMU) on G7 stock returns in the challenging year in which the COVID‐19 pandemic began (2020) under different stock market conditions (bearish, normal, and bullish). To this aim, this study applies novel quantile‐based approaches, namely Quantile autoregression unit root test, Quantile‐on‐quantile approach, and Quantile Granger‐causality test covering the period from 01 January 2020 to 15 September 2020. Main findings of the study are (1) G7 stock return series are stationary for all quantiles of the conditional distributions with minor exceptions meaning that shocks have temporary effects on stock returns of G7 markets. (2) The impact of Twitter‐based uncertainty strongly depends on the market condition, whether it is bullish or bearish for all G7 markets. A heterogeneous association exists between variables caused by different market conditions. (3) A bi‐directional causal association exists between stock returns‐TEU and stock returns‐TMU. This result confirms the existence of feedback hypothesis between G7 stock returns and TEU, TMU, respectively. This study provides important policy implications and recommendations for policy makers and investors on the nexus between Twitter‐based uncertainties and stock returns.
doi_str_mv 10.1002/ijfe.2858
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3116445403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116445403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-8be230b836647fb4c3f593d3c3861ac193559f3eb8be936474ddee736979c2f73</originalsourceid><addsrcrecordid>eNp10L1OwzAQB3ALgUQpDLyBJSaGtHac-IMNVW0pqgRDma3EOUvpR1Jsh6obj8Az8iQ4lJXJN_zuzvdH6JaSESUkHddrC6NU5vIMDShRKqE0l-d9LXiiGBGX6Mr7NSGE54IM0OvqUIcA7vvzqyw8VLhrDLhQ1E044qKpsA-t2eBd4TYQsIPQucY_4OlHXUGU2Lp2h-cCm7ZrgqvBX6MLW2w93Py9Q_Q2m64mT8nyZb6YPC4TkyohE1lCykgpGeeZsGVmmM0Vq5hhktPCUMXyXFkGZYSKRZNVFYBgXAllUivYEN2d5u5d-96BD3rdxr_FlZpRyrMszwiL6v6kjGu9d2D13tXxmKOmRPeB6T4w3QcW7fhkD_UWjv9DvXieTX87fgDTeG3b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116445403</pqid></control><display><type>article</type><title>Twitter‐based uncertainty and stock market returns: Evidence from G7 countries</title><source>Wiley Journals</source><creator>Coskun, Merve ; Taspinar, Nigar</creator><creatorcontrib>Coskun, Merve ; Taspinar, Nigar</creatorcontrib><description>The aim of this study is to investigate the impact of Twitter‐based economic uncertainty (TEU) and Twitter‐based market uncertainty (TMU) on G7 stock returns in the challenging year in which the COVID‐19 pandemic began (2020) under different stock market conditions (bearish, normal, and bullish). To this aim, this study applies novel quantile‐based approaches, namely Quantile autoregression unit root test, Quantile‐on‐quantile approach, and Quantile Granger‐causality test covering the period from 01 January 2020 to 15 September 2020. Main findings of the study are (1) G7 stock return series are stationary for all quantiles of the conditional distributions with minor exceptions meaning that shocks have temporary effects on stock returns of G7 markets. (2) The impact of Twitter‐based uncertainty strongly depends on the market condition, whether it is bullish or bearish for all G7 markets. A heterogeneous association exists between variables caused by different market conditions. (3) A bi‐directional causal association exists between stock returns‐TEU and stock returns‐TMU. This result confirms the existence of feedback hypothesis between G7 stock returns and TEU, TMU, respectively. This study provides important policy implications and recommendations for policy makers and investors on the nexus between Twitter‐based uncertainties and stock returns.</description><identifier>ISSN: 1076-9307</identifier><identifier>EISSN: 1099-1158</identifier><identifier>DOI: 10.1002/ijfe.2858</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>COVID‐19 pandemic ; economic policy uncertainty ; quantile Granger‐causality test ; quantile‐on‐quantile approach ; Rates of return ; Securities markets ; Social networks ; stock market returns ; twitter‐based uncertainty measures</subject><ispartof>International journal of finance and economics, 2024-10, Vol.29 (4), p.3840-3860</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-8be230b836647fb4c3f593d3c3861ac193559f3eb8be936474ddee736979c2f73</citedby><cites>FETCH-LOGICAL-c2978-8be230b836647fb4c3f593d3c3861ac193559f3eb8be936474ddee736979c2f73</cites><orcidid>0000-0003-4277-2220 ; 0000-0003-3012-4920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fijfe.2858$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fijfe.2858$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Coskun, Merve</creatorcontrib><creatorcontrib>Taspinar, Nigar</creatorcontrib><title>Twitter‐based uncertainty and stock market returns: Evidence from G7 countries</title><title>International journal of finance and economics</title><description>The aim of this study is to investigate the impact of Twitter‐based economic uncertainty (TEU) and Twitter‐based market uncertainty (TMU) on G7 stock returns in the challenging year in which the COVID‐19 pandemic began (2020) under different stock market conditions (bearish, normal, and bullish). To this aim, this study applies novel quantile‐based approaches, namely Quantile autoregression unit root test, Quantile‐on‐quantile approach, and Quantile Granger‐causality test covering the period from 01 January 2020 to 15 September 2020. Main findings of the study are (1) G7 stock return series are stationary for all quantiles of the conditional distributions with minor exceptions meaning that shocks have temporary effects on stock returns of G7 markets. (2) The impact of Twitter‐based uncertainty strongly depends on the market condition, whether it is bullish or bearish for all G7 markets. A heterogeneous association exists between variables caused by different market conditions. (3) A bi‐directional causal association exists between stock returns‐TEU and stock returns‐TMU. This result confirms the existence of feedback hypothesis between G7 stock returns and TEU, TMU, respectively. This study provides important policy implications and recommendations for policy makers and investors on the nexus between Twitter‐based uncertainties and stock returns.</description><subject>COVID‐19 pandemic</subject><subject>economic policy uncertainty</subject><subject>quantile Granger‐causality test</subject><subject>quantile‐on‐quantile approach</subject><subject>Rates of return</subject><subject>Securities markets</subject><subject>Social networks</subject><subject>stock market returns</subject><subject>twitter‐based uncertainty measures</subject><issn>1076-9307</issn><issn>1099-1158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAQB3ALgUQpDLyBJSaGtHac-IMNVW0pqgRDma3EOUvpR1Jsh6obj8Az8iQ4lJXJN_zuzvdH6JaSESUkHddrC6NU5vIMDShRKqE0l-d9LXiiGBGX6Mr7NSGE54IM0OvqUIcA7vvzqyw8VLhrDLhQ1E044qKpsA-t2eBd4TYQsIPQucY_4OlHXUGU2Lp2h-cCm7ZrgqvBX6MLW2w93Py9Q_Q2m64mT8nyZb6YPC4TkyohE1lCykgpGeeZsGVmmM0Vq5hhktPCUMXyXFkGZYSKRZNVFYBgXAllUivYEN2d5u5d-96BD3rdxr_FlZpRyrMszwiL6v6kjGu9d2D13tXxmKOmRPeB6T4w3QcW7fhkD_UWjv9DvXieTX87fgDTeG3b</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Coskun, Merve</creator><creator>Taspinar, Nigar</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4277-2220</orcidid><orcidid>https://orcid.org/0000-0003-3012-4920</orcidid></search><sort><creationdate>202410</creationdate><title>Twitter‐based uncertainty and stock market returns: Evidence from G7 countries</title><author>Coskun, Merve ; Taspinar, Nigar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-8be230b836647fb4c3f593d3c3861ac193559f3eb8be936474ddee736979c2f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>COVID‐19 pandemic</topic><topic>economic policy uncertainty</topic><topic>quantile Granger‐causality test</topic><topic>quantile‐on‐quantile approach</topic><topic>Rates of return</topic><topic>Securities markets</topic><topic>Social networks</topic><topic>stock market returns</topic><topic>twitter‐based uncertainty measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coskun, Merve</creatorcontrib><creatorcontrib>Taspinar, Nigar</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of finance and economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coskun, Merve</au><au>Taspinar, Nigar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Twitter‐based uncertainty and stock market returns: Evidence from G7 countries</atitle><jtitle>International journal of finance and economics</jtitle><date>2024-10</date><risdate>2024</risdate><volume>29</volume><issue>4</issue><spage>3840</spage><epage>3860</epage><pages>3840-3860</pages><issn>1076-9307</issn><eissn>1099-1158</eissn><abstract>The aim of this study is to investigate the impact of Twitter‐based economic uncertainty (TEU) and Twitter‐based market uncertainty (TMU) on G7 stock returns in the challenging year in which the COVID‐19 pandemic began (2020) under different stock market conditions (bearish, normal, and bullish). To this aim, this study applies novel quantile‐based approaches, namely Quantile autoregression unit root test, Quantile‐on‐quantile approach, and Quantile Granger‐causality test covering the period from 01 January 2020 to 15 September 2020. Main findings of the study are (1) G7 stock return series are stationary for all quantiles of the conditional distributions with minor exceptions meaning that shocks have temporary effects on stock returns of G7 markets. (2) The impact of Twitter‐based uncertainty strongly depends on the market condition, whether it is bullish or bearish for all G7 markets. A heterogeneous association exists between variables caused by different market conditions. (3) A bi‐directional causal association exists between stock returns‐TEU and stock returns‐TMU. This result confirms the existence of feedback hypothesis between G7 stock returns and TEU, TMU, respectively. This study provides important policy implications and recommendations for policy makers and investors on the nexus between Twitter‐based uncertainties and stock returns.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/ijfe.2858</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4277-2220</orcidid><orcidid>https://orcid.org/0000-0003-3012-4920</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1076-9307
ispartof International journal of finance and economics, 2024-10, Vol.29 (4), p.3840-3860
issn 1076-9307
1099-1158
language eng
recordid cdi_proquest_journals_3116445403
source Wiley Journals
subjects COVID‐19 pandemic
economic policy uncertainty
quantile Granger‐causality test
quantile‐on‐quantile approach
Rates of return
Securities markets
Social networks
stock market returns
twitter‐based uncertainty measures
title Twitter‐based uncertainty and stock market returns: Evidence from G7 countries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A44%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Twitter%E2%80%90based%20uncertainty%20and%20stock%20market%20returns:%20Evidence%20from%20G7%20countries&rft.jtitle=International%20journal%20of%20finance%20and%20economics&rft.au=Coskun,%20Merve&rft.date=2024-10&rft.volume=29&rft.issue=4&rft.spage=3840&rft.epage=3860&rft.pages=3840-3860&rft.issn=1076-9307&rft.eissn=1099-1158&rft_id=info:doi/10.1002/ijfe.2858&rft_dat=%3Cproquest_cross%3E3116445403%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116445403&rft_id=info:pmid/&rfr_iscdi=true