Disruption Symmetric Crystal Structure Favoring Photocatalytic CO2 Reduction: Reduced COOH Formation Energy Barrier on Al Doped CuS/TiO2

How to break the C═O bond and reduce the energy barrier of *COOH formation is the key to triggering the photocatalytic CO2 reduction (PCR) reaction and subsequent proton‐electron processes, which is as important as overcoming high recombination rate of photocarriers. In order to solve this issue, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-10, Vol.34 (42), p.n/a
Hauptverfasser: Wang, Junyan, Zhang, Haoyu, Nian, Yao, Chen, Yiqiang, Cheng, Haolin, Yang, Chen, Han, You, Tan, Xin, Ye, Jinhua, Yu, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 42
container_start_page
container_title Advanced functional materials
container_volume 34
creator Wang, Junyan
Zhang, Haoyu
Nian, Yao
Chen, Yiqiang
Cheng, Haolin
Yang, Chen
Han, You
Tan, Xin
Ye, Jinhua
Yu, Tao
description How to break the C═O bond and reduce the energy barrier of *COOH formation is the key to triggering the photocatalytic CO2 reduction (PCR) reaction and subsequent proton‐electron processes, which is as important as overcoming high recombination rate of photocarriers. In order to solve this issue, the symmetric structure of CuS/TiO2 is destroyed by S vacancy and Al doping (denoted as Al‐CuS/TiO2), which significantly expands the electron localization range and promotes the cis‐coordination splitting of Cu 3d orbits. The experimental results show that the CO yield selectivity of ≈90.68% and yield of ≈335.68 µmol·g−1·h−1 on Al‐CuS/TiO2. The redistribution of Cu electron states in specific d/s/p orbitals increases the adsorption of CO2 and reduces the reaction energy barrier of *COOH intermediates, while effectively breaking the C═O bond. Doped Al atoms also serve as adsorption sites for H2O molecules, effectively interleaving the competition with photocatalytic CO2 reduction at the Cu sites is effectively staggered. This study provides a new approach to reduce the energy barrier of *COOH formation and to accelerate the photocarrier migration by destroying local symmetry to adjust the crystal structure, which is important for further improving the activity and selectivity of PCR. In this work, the symmetric structure and electron localization range of CuS are successfully adjusted via Al doping and S vacancy. Due to the destruction of CuS symmetry structure, more metal Cu sites are exposed and the electronic structure of the active sites is regulated, which expands the electron localization range and facilitates the adsorption of CO2 and *COOH, which speeds up the photocatalytic CO2 reduction rate.
doi_str_mv 10.1002/adfm.202406549
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3116308304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116308304</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1639-8715b3307f16b84da610fa4c21720b74055201e9eb1de1c2d43221c925f465d43</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsFavnhc8p53ZzV9vtW2sUInYCt7CJtnULUkTN4mSb-DHdmOlp5k38-M9eITcIkwQgE1FlpcTBswG17GDMzJCF12LA_PPTzu-X5KrptkDoOdxe0R-FqrRXd2q6kA3fVnKVquUznXftKKgm1Z3adtpSUPxVWl12NGXj6qtUmG-fTuQEaOvMjOUcbg_rjIz52hFw0qX4s95eZB619MHobWSmprLrKCLqh7IbjPdqohdk4tcFI28-Z9j8hYut_OVtY4en-aztVWjywPL99BJOAcvRzfx7Uy4CLmwU4Yeg8SzwXEYoAxkgpnElGU2ZwzTgDm57TpGjcnd0bfW1WcnmzbeV50-mMiYo4kAn8NABUfqWxWyj2utSqH7GCEeqo6HquNT1fFsET6fFP8FWiZ0Tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116308304</pqid></control><display><type>article</type><title>Disruption Symmetric Crystal Structure Favoring Photocatalytic CO2 Reduction: Reduced COOH Formation Energy Barrier on Al Doped CuS/TiO2</title><source>Access via Wiley Online Library</source><creator>Wang, Junyan ; Zhang, Haoyu ; Nian, Yao ; Chen, Yiqiang ; Cheng, Haolin ; Yang, Chen ; Han, You ; Tan, Xin ; Ye, Jinhua ; Yu, Tao</creator><creatorcontrib>Wang, Junyan ; Zhang, Haoyu ; Nian, Yao ; Chen, Yiqiang ; Cheng, Haolin ; Yang, Chen ; Han, You ; Tan, Xin ; Ye, Jinhua ; Yu, Tao</creatorcontrib><description>How to break the C═O bond and reduce the energy barrier of *COOH formation is the key to triggering the photocatalytic CO2 reduction (PCR) reaction and subsequent proton‐electron processes, which is as important as overcoming high recombination rate of photocarriers. In order to solve this issue, the symmetric structure of CuS/TiO2 is destroyed by S vacancy and Al doping (denoted as Al‐CuS/TiO2), which significantly expands the electron localization range and promotes the cis‐coordination splitting of Cu 3d orbits. The experimental results show that the CO yield selectivity of ≈90.68% and yield of ≈335.68 µmol·g−1·h−1 on Al‐CuS/TiO2. The redistribution of Cu electron states in specific d/s/p orbitals increases the adsorption of CO2 and reduces the reaction energy barrier of *COOH intermediates, while effectively breaking the C═O bond. Doped Al atoms also serve as adsorption sites for H2O molecules, effectively interleaving the competition with photocatalytic CO2 reduction at the Cu sites is effectively staggered. This study provides a new approach to reduce the energy barrier of *COOH formation and to accelerate the photocarrier migration by destroying local symmetry to adjust the crystal structure, which is important for further improving the activity and selectivity of PCR. In this work, the symmetric structure and electron localization range of CuS are successfully adjusted via Al doping and S vacancy. Due to the destruction of CuS symmetry structure, more metal Cu sites are exposed and the electronic structure of the active sites is regulated, which expands the electron localization range and facilitates the adsorption of CO2 and *COOH, which speeds up the photocatalytic CO2 reduction rate.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202406549</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Al doping ; Atomic properties ; Carbon dioxide ; Chemical bonds ; Copper sulfides ; Crystal structure ; Electron states ; Free energy ; Heat of formation ; Molecular structure ; Photocatalysis ; Photocatalytic CO2 reduction ; S vacancy ; Symmetry ; symmetry breaking ; Titanium dioxide</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (42), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3301-4957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202406549$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202406549$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Junyan</creatorcontrib><creatorcontrib>Zhang, Haoyu</creatorcontrib><creatorcontrib>Nian, Yao</creatorcontrib><creatorcontrib>Chen, Yiqiang</creatorcontrib><creatorcontrib>Cheng, Haolin</creatorcontrib><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Han, You</creatorcontrib><creatorcontrib>Tan, Xin</creatorcontrib><creatorcontrib>Ye, Jinhua</creatorcontrib><creatorcontrib>Yu, Tao</creatorcontrib><title>Disruption Symmetric Crystal Structure Favoring Photocatalytic CO2 Reduction: Reduced COOH Formation Energy Barrier on Al Doped CuS/TiO2</title><title>Advanced functional materials</title><description>How to break the C═O bond and reduce the energy barrier of *COOH formation is the key to triggering the photocatalytic CO2 reduction (PCR) reaction and subsequent proton‐electron processes, which is as important as overcoming high recombination rate of photocarriers. In order to solve this issue, the symmetric structure of CuS/TiO2 is destroyed by S vacancy and Al doping (denoted as Al‐CuS/TiO2), which significantly expands the electron localization range and promotes the cis‐coordination splitting of Cu 3d orbits. The experimental results show that the CO yield selectivity of ≈90.68% and yield of ≈335.68 µmol·g−1·h−1 on Al‐CuS/TiO2. The redistribution of Cu electron states in specific d/s/p orbitals increases the adsorption of CO2 and reduces the reaction energy barrier of *COOH intermediates, while effectively breaking the C═O bond. Doped Al atoms also serve as adsorption sites for H2O molecules, effectively interleaving the competition with photocatalytic CO2 reduction at the Cu sites is effectively staggered. This study provides a new approach to reduce the energy barrier of *COOH formation and to accelerate the photocarrier migration by destroying local symmetry to adjust the crystal structure, which is important for further improving the activity and selectivity of PCR. In this work, the symmetric structure and electron localization range of CuS are successfully adjusted via Al doping and S vacancy. Due to the destruction of CuS symmetry structure, more metal Cu sites are exposed and the electronic structure of the active sites is regulated, which expands the electron localization range and facilitates the adsorption of CO2 and *COOH, which speeds up the photocatalytic CO2 reduction rate.</description><subject>Adsorption</subject><subject>Al doping</subject><subject>Atomic properties</subject><subject>Carbon dioxide</subject><subject>Chemical bonds</subject><subject>Copper sulfides</subject><subject>Crystal structure</subject><subject>Electron states</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Molecular structure</subject><subject>Photocatalysis</subject><subject>Photocatalytic CO2 reduction</subject><subject>S vacancy</subject><subject>Symmetry</subject><subject>symmetry breaking</subject><subject>Titanium dioxide</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE9Lw0AQxRdRsFavnhc8p53ZzV9vtW2sUInYCt7CJtnULUkTN4mSb-DHdmOlp5k38-M9eITcIkwQgE1FlpcTBswG17GDMzJCF12LA_PPTzu-X5KrptkDoOdxe0R-FqrRXd2q6kA3fVnKVquUznXftKKgm1Z3adtpSUPxVWl12NGXj6qtUmG-fTuQEaOvMjOUcbg_rjIz52hFw0qX4s95eZB619MHobWSmprLrKCLqh7IbjPdqohdk4tcFI28-Z9j8hYut_OVtY4en-aztVWjywPL99BJOAcvRzfx7Uy4CLmwU4Yeg8SzwXEYoAxkgpnElGU2ZwzTgDm57TpGjcnd0bfW1WcnmzbeV50-mMiYo4kAn8NABUfqWxWyj2utSqH7GCEeqo6HquNT1fFsET6fFP8FWiZ0Tg</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Wang, Junyan</creator><creator>Zhang, Haoyu</creator><creator>Nian, Yao</creator><creator>Chen, Yiqiang</creator><creator>Cheng, Haolin</creator><creator>Yang, Chen</creator><creator>Han, You</creator><creator>Tan, Xin</creator><creator>Ye, Jinhua</creator><creator>Yu, Tao</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3301-4957</orcidid></search><sort><creationdate>20241001</creationdate><title>Disruption Symmetric Crystal Structure Favoring Photocatalytic CO2 Reduction: Reduced COOH Formation Energy Barrier on Al Doped CuS/TiO2</title><author>Wang, Junyan ; Zhang, Haoyu ; Nian, Yao ; Chen, Yiqiang ; Cheng, Haolin ; Yang, Chen ; Han, You ; Tan, Xin ; Ye, Jinhua ; Yu, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1639-8715b3307f16b84da610fa4c21720b74055201e9eb1de1c2d43221c925f465d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Al doping</topic><topic>Atomic properties</topic><topic>Carbon dioxide</topic><topic>Chemical bonds</topic><topic>Copper sulfides</topic><topic>Crystal structure</topic><topic>Electron states</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Molecular structure</topic><topic>Photocatalysis</topic><topic>Photocatalytic CO2 reduction</topic><topic>S vacancy</topic><topic>Symmetry</topic><topic>symmetry breaking</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Junyan</creatorcontrib><creatorcontrib>Zhang, Haoyu</creatorcontrib><creatorcontrib>Nian, Yao</creatorcontrib><creatorcontrib>Chen, Yiqiang</creatorcontrib><creatorcontrib>Cheng, Haolin</creatorcontrib><creatorcontrib>Yang, Chen</creatorcontrib><creatorcontrib>Han, You</creatorcontrib><creatorcontrib>Tan, Xin</creatorcontrib><creatorcontrib>Ye, Jinhua</creatorcontrib><creatorcontrib>Yu, Tao</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Junyan</au><au>Zhang, Haoyu</au><au>Nian, Yao</au><au>Chen, Yiqiang</au><au>Cheng, Haolin</au><au>Yang, Chen</au><au>Han, You</au><au>Tan, Xin</au><au>Ye, Jinhua</au><au>Yu, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disruption Symmetric Crystal Structure Favoring Photocatalytic CO2 Reduction: Reduced COOH Formation Energy Barrier on Al Doped CuS/TiO2</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>42</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>How to break the C═O bond and reduce the energy barrier of *COOH formation is the key to triggering the photocatalytic CO2 reduction (PCR) reaction and subsequent proton‐electron processes, which is as important as overcoming high recombination rate of photocarriers. In order to solve this issue, the symmetric structure of CuS/TiO2 is destroyed by S vacancy and Al doping (denoted as Al‐CuS/TiO2), which significantly expands the electron localization range and promotes the cis‐coordination splitting of Cu 3d orbits. The experimental results show that the CO yield selectivity of ≈90.68% and yield of ≈335.68 µmol·g−1·h−1 on Al‐CuS/TiO2. The redistribution of Cu electron states in specific d/s/p orbitals increases the adsorption of CO2 and reduces the reaction energy barrier of *COOH intermediates, while effectively breaking the C═O bond. Doped Al atoms also serve as adsorption sites for H2O molecules, effectively interleaving the competition with photocatalytic CO2 reduction at the Cu sites is effectively staggered. This study provides a new approach to reduce the energy barrier of *COOH formation and to accelerate the photocarrier migration by destroying local symmetry to adjust the crystal structure, which is important for further improving the activity and selectivity of PCR. In this work, the symmetric structure and electron localization range of CuS are successfully adjusted via Al doping and S vacancy. Due to the destruction of CuS symmetry structure, more metal Cu sites are exposed and the electronic structure of the active sites is regulated, which expands the electron localization range and facilitates the adsorption of CO2 and *COOH, which speeds up the photocatalytic CO2 reduction rate.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202406549</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3301-4957</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-10, Vol.34 (42), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3116308304
source Access via Wiley Online Library
subjects Adsorption
Al doping
Atomic properties
Carbon dioxide
Chemical bonds
Copper sulfides
Crystal structure
Electron states
Free energy
Heat of formation
Molecular structure
Photocatalysis
Photocatalytic CO2 reduction
S vacancy
Symmetry
symmetry breaking
Titanium dioxide
title Disruption Symmetric Crystal Structure Favoring Photocatalytic CO2 Reduction: Reduced COOH Formation Energy Barrier on Al Doped CuS/TiO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disruption%20Symmetric%20Crystal%20Structure%20Favoring%20Photocatalytic%20CO2%20Reduction:%20Reduced%20COOH%20Formation%20Energy%20Barrier%20on%20Al%20Doped%20CuS/TiO2&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Junyan&rft.date=2024-10-01&rft.volume=34&rft.issue=42&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202406549&rft_dat=%3Cproquest_wiley%3E3116308304%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116308304&rft_id=info:pmid/&rfr_iscdi=true