Proton Self‐Limiting Effect of Solid Acids Boosts Electrochemical Performance of Zinc‐ion Batteries

At present, aqueous rechargeable Zn–MnO2 batteries have attracted widespread attention as green potential application for renewable energy storage devices. MnO2 cathode has great potential for application, but its proton reaction results in side reactions of cathode, electrolyte consumption, and dra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-10, Vol.34 (42), p.n/a
Hauptverfasser: Chen, Mengting, Liu, Wenbao, Ren, Danyang, An, Yunlin, Shu, Chang, Zhang, Shengguang, Liang, Wenjun, Sun, Jianchao, Kang, Feiyu, Jiang, Fuyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 42
container_start_page
container_title Advanced functional materials
container_volume 34
creator Chen, Mengting
Liu, Wenbao
Ren, Danyang
An, Yunlin
Shu, Chang
Zhang, Shengguang
Liang, Wenjun
Sun, Jianchao
Kang, Feiyu
Jiang, Fuyi
description At present, aqueous rechargeable Zn–MnO2 batteries have attracted widespread attention as green potential application for renewable energy storage devices. MnO2 cathode has great potential for application, but its proton reaction results in side reactions of cathode, electrolyte consumption, and dramatic pH value changes, suffering from capacity degradation. To address the issues caused by proton deficit, a proton–limited domain strategy is proposed by integrating solid acids (Sulfonic acid type polystyrene–divinylbenzene, SATP) with proton exchange reactions into MnO2. SATP can act as a new proton source increasing the amount of H+ and reducing the generation of zinc hydroxide sulfate, by–product of proton at the cathode interface, via proton exchange reactions of ‐HSO3– group. As a result, Zn–MnO2/SATP battery delivered with excellent rate performance (218.4 mAh g–1 at 2 A g–1) and high cycling stability (the retained capacity of 115.8 mAh g–1 after 500 cycles at a current density of 1 A g–1. This work provides an innovative strategy for high performance aqueous Zn–MnO2 batteries. SATP employs the ion exchange reaction of sulfonic acid ions on their surface to reversibly adsorb and desorb protons. This process effectively restricts the partial proton reaction of manganese dioxide at the surface interface. SATP can substitute some zinc ions, supplying protons for the electrochemical reaction of MnO2 and reducing the generation of the byproduct ZHS. As a result, SATP significantly enhances the rate performance, cycle stability, and electrochemical reaction kinetics of zinc manganese batteries through its self‐limiting  domain effect.
doi_str_mv 10.1002/adfm.202404983
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3116308300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116308300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2723-542acb4e1501c2e37a6ca5927e4f17453949c3e394dcc0686b4225b2a07e90fd3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wHXrTc_87dsa6tCxUIVxM2QZm5qysykJlOkOx_BZ_RJnFKpS1fnwD3fuXAIuWTQZwD8WhWm6nPgEmSWiiPSYTGLewJ4enzw7OWUnIWwAmBJImSHLGfeNa6mcyzN9-fX1Fa2sfWSjo1B3VBn6NyVtqADbYtAh86FJtBx2d68029YWa1KOkNvnK9UrXFHvNpat122rR2qpkFvMZyTE6PKgBe_2iXPk_HT6K43fby9Hw2mPc0TLnqR5EovJLIImOYoEhVrFWU8QWlYIiORyUwLbKXQGuI0XkjOowVXkGAGphBdcrXvXXv3vsHQ5Cu38XX7MheMxQJSAdCm-vuU9i4EjyZfe1spv80Z5Lsx892Y-WHMFsj2wIctcftPOh_cTB7-2B9mLnph</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116308300</pqid></control><display><type>article</type><title>Proton Self‐Limiting Effect of Solid Acids Boosts Electrochemical Performance of Zinc‐ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Mengting ; Liu, Wenbao ; Ren, Danyang ; An, Yunlin ; Shu, Chang ; Zhang, Shengguang ; Liang, Wenjun ; Sun, Jianchao ; Kang, Feiyu ; Jiang, Fuyi</creator><creatorcontrib>Chen, Mengting ; Liu, Wenbao ; Ren, Danyang ; An, Yunlin ; Shu, Chang ; Zhang, Shengguang ; Liang, Wenjun ; Sun, Jianchao ; Kang, Feiyu ; Jiang, Fuyi</creatorcontrib><description>At present, aqueous rechargeable Zn–MnO2 batteries have attracted widespread attention as green potential application for renewable energy storage devices. MnO2 cathode has great potential for application, but its proton reaction results in side reactions of cathode, electrolyte consumption, and dramatic pH value changes, suffering from capacity degradation. To address the issues caused by proton deficit, a proton–limited domain strategy is proposed by integrating solid acids (Sulfonic acid type polystyrene–divinylbenzene, SATP) with proton exchange reactions into MnO2. SATP can act as a new proton source increasing the amount of H+ and reducing the generation of zinc hydroxide sulfate, by–product of proton at the cathode interface, via proton exchange reactions of ‐HSO3– group. As a result, Zn–MnO2/SATP battery delivered with excellent rate performance (218.4 mAh g–1 at 2 A g–1) and high cycling stability (the retained capacity of 115.8 mAh g–1 after 500 cycles at a current density of 1 A g–1. This work provides an innovative strategy for high performance aqueous Zn–MnO2 batteries. SATP employs the ion exchange reaction of sulfonic acid ions on their surface to reversibly adsorb and desorb protons. This process effectively restricts the partial proton reaction of manganese dioxide at the surface interface. SATP can substitute some zinc ions, supplying protons for the electrochemical reaction of MnO2 and reducing the generation of the byproduct ZHS. As a result, SATP significantly enhances the rate performance, cycle stability, and electrochemical reaction kinetics of zinc manganese batteries through its self‐limiting  domain effect.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202404983</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Clean energy ; Divinylbenzene ; Electrochemical analysis ; Manganese dioxide ; Metal hydroxides ; MnO2 cathode ; Polystyrene resins ; proton reaction ; Protons ; solid acid ; Sulfonic acid ; zinc ion battery</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (42), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2723-542acb4e1501c2e37a6ca5927e4f17453949c3e394dcc0686b4225b2a07e90fd3</cites><orcidid>0000-0003-1358-0537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202404983$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202404983$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chen, Mengting</creatorcontrib><creatorcontrib>Liu, Wenbao</creatorcontrib><creatorcontrib>Ren, Danyang</creatorcontrib><creatorcontrib>An, Yunlin</creatorcontrib><creatorcontrib>Shu, Chang</creatorcontrib><creatorcontrib>Zhang, Shengguang</creatorcontrib><creatorcontrib>Liang, Wenjun</creatorcontrib><creatorcontrib>Sun, Jianchao</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Jiang, Fuyi</creatorcontrib><title>Proton Self‐Limiting Effect of Solid Acids Boosts Electrochemical Performance of Zinc‐ion Batteries</title><title>Advanced functional materials</title><description>At present, aqueous rechargeable Zn–MnO2 batteries have attracted widespread attention as green potential application for renewable energy storage devices. MnO2 cathode has great potential for application, but its proton reaction results in side reactions of cathode, electrolyte consumption, and dramatic pH value changes, suffering from capacity degradation. To address the issues caused by proton deficit, a proton–limited domain strategy is proposed by integrating solid acids (Sulfonic acid type polystyrene–divinylbenzene, SATP) with proton exchange reactions into MnO2. SATP can act as a new proton source increasing the amount of H+ and reducing the generation of zinc hydroxide sulfate, by–product of proton at the cathode interface, via proton exchange reactions of ‐HSO3– group. As a result, Zn–MnO2/SATP battery delivered with excellent rate performance (218.4 mAh g–1 at 2 A g–1) and high cycling stability (the retained capacity of 115.8 mAh g–1 after 500 cycles at a current density of 1 A g–1. This work provides an innovative strategy for high performance aqueous Zn–MnO2 batteries. SATP employs the ion exchange reaction of sulfonic acid ions on their surface to reversibly adsorb and desorb protons. This process effectively restricts the partial proton reaction of manganese dioxide at the surface interface. SATP can substitute some zinc ions, supplying protons for the electrochemical reaction of MnO2 and reducing the generation of the byproduct ZHS. As a result, SATP significantly enhances the rate performance, cycle stability, and electrochemical reaction kinetics of zinc manganese batteries through its self‐limiting  domain effect.</description><subject>Cathodes</subject><subject>Clean energy</subject><subject>Divinylbenzene</subject><subject>Electrochemical analysis</subject><subject>Manganese dioxide</subject><subject>Metal hydroxides</subject><subject>MnO2 cathode</subject><subject>Polystyrene resins</subject><subject>proton reaction</subject><subject>Protons</subject><subject>solid acid</subject><subject>Sulfonic acid</subject><subject>zinc ion battery</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKtb1wHXrTc_87dsa6tCxUIVxM2QZm5qysykJlOkOx_BZ_RJnFKpS1fnwD3fuXAIuWTQZwD8WhWm6nPgEmSWiiPSYTGLewJ4enzw7OWUnIWwAmBJImSHLGfeNa6mcyzN9-fX1Fa2sfWSjo1B3VBn6NyVtqADbYtAh86FJtBx2d68029YWa1KOkNvnK9UrXFHvNpat122rR2qpkFvMZyTE6PKgBe_2iXPk_HT6K43fby9Hw2mPc0TLnqR5EovJLIImOYoEhVrFWU8QWlYIiORyUwLbKXQGuI0XkjOowVXkGAGphBdcrXvXXv3vsHQ5Cu38XX7MheMxQJSAdCm-vuU9i4EjyZfe1spv80Z5Lsx892Y-WHMFsj2wIctcftPOh_cTB7-2B9mLnph</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Chen, Mengting</creator><creator>Liu, Wenbao</creator><creator>Ren, Danyang</creator><creator>An, Yunlin</creator><creator>Shu, Chang</creator><creator>Zhang, Shengguang</creator><creator>Liang, Wenjun</creator><creator>Sun, Jianchao</creator><creator>Kang, Feiyu</creator><creator>Jiang, Fuyi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1358-0537</orcidid></search><sort><creationdate>20241001</creationdate><title>Proton Self‐Limiting Effect of Solid Acids Boosts Electrochemical Performance of Zinc‐ion Batteries</title><author>Chen, Mengting ; Liu, Wenbao ; Ren, Danyang ; An, Yunlin ; Shu, Chang ; Zhang, Shengguang ; Liang, Wenjun ; Sun, Jianchao ; Kang, Feiyu ; Jiang, Fuyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2723-542acb4e1501c2e37a6ca5927e4f17453949c3e394dcc0686b4225b2a07e90fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodes</topic><topic>Clean energy</topic><topic>Divinylbenzene</topic><topic>Electrochemical analysis</topic><topic>Manganese dioxide</topic><topic>Metal hydroxides</topic><topic>MnO2 cathode</topic><topic>Polystyrene resins</topic><topic>proton reaction</topic><topic>Protons</topic><topic>solid acid</topic><topic>Sulfonic acid</topic><topic>zinc ion battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Mengting</creatorcontrib><creatorcontrib>Liu, Wenbao</creatorcontrib><creatorcontrib>Ren, Danyang</creatorcontrib><creatorcontrib>An, Yunlin</creatorcontrib><creatorcontrib>Shu, Chang</creatorcontrib><creatorcontrib>Zhang, Shengguang</creatorcontrib><creatorcontrib>Liang, Wenjun</creatorcontrib><creatorcontrib>Sun, Jianchao</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Jiang, Fuyi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Mengting</au><au>Liu, Wenbao</au><au>Ren, Danyang</au><au>An, Yunlin</au><au>Shu, Chang</au><au>Zhang, Shengguang</au><au>Liang, Wenjun</au><au>Sun, Jianchao</au><au>Kang, Feiyu</au><au>Jiang, Fuyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton Self‐Limiting Effect of Solid Acids Boosts Electrochemical Performance of Zinc‐ion Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>42</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>At present, aqueous rechargeable Zn–MnO2 batteries have attracted widespread attention as green potential application for renewable energy storage devices. MnO2 cathode has great potential for application, but its proton reaction results in side reactions of cathode, electrolyte consumption, and dramatic pH value changes, suffering from capacity degradation. To address the issues caused by proton deficit, a proton–limited domain strategy is proposed by integrating solid acids (Sulfonic acid type polystyrene–divinylbenzene, SATP) with proton exchange reactions into MnO2. SATP can act as a new proton source increasing the amount of H+ and reducing the generation of zinc hydroxide sulfate, by–product of proton at the cathode interface, via proton exchange reactions of ‐HSO3– group. As a result, Zn–MnO2/SATP battery delivered with excellent rate performance (218.4 mAh g–1 at 2 A g–1) and high cycling stability (the retained capacity of 115.8 mAh g–1 after 500 cycles at a current density of 1 A g–1. This work provides an innovative strategy for high performance aqueous Zn–MnO2 batteries. SATP employs the ion exchange reaction of sulfonic acid ions on their surface to reversibly adsorb and desorb protons. This process effectively restricts the partial proton reaction of manganese dioxide at the surface interface. SATP can substitute some zinc ions, supplying protons for the electrochemical reaction of MnO2 and reducing the generation of the byproduct ZHS. As a result, SATP significantly enhances the rate performance, cycle stability, and electrochemical reaction kinetics of zinc manganese batteries through its self‐limiting  domain effect.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202404983</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1358-0537</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-10, Vol.34 (42), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3116308300
source Wiley Online Library Journals Frontfile Complete
subjects Cathodes
Clean energy
Divinylbenzene
Electrochemical analysis
Manganese dioxide
Metal hydroxides
MnO2 cathode
Polystyrene resins
proton reaction
Protons
solid acid
Sulfonic acid
zinc ion battery
title Proton Self‐Limiting Effect of Solid Acids Boosts Electrochemical Performance of Zinc‐ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20Self%E2%80%90Limiting%20Effect%20of%20Solid%20Acids%20Boosts%20Electrochemical%20Performance%20of%20Zinc%E2%80%90ion%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Chen,%20Mengting&rft.date=2024-10-01&rft.volume=34&rft.issue=42&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202404983&rft_dat=%3Cproquest_cross%3E3116308300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116308300&rft_id=info:pmid/&rfr_iscdi=true