Critical Factors Contributing to the Thermal Runaway of Thiophosphate Solid Electrolytes for All‐Solid‐State Batteries

Although all‐solid‐state batteries are suggested as a means to tackle the safety concerns associated with current Li‐ion batteries, there is presently a lack of comprehensive understanding regarding their thermal safety. In this context, critical factors contributing to the thermal runaway of thioph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-10, Vol.34 (42), p.n/a
Hauptverfasser: Kim, Taehun, Chang, Hongjun, Song, Gawon, Lee, Suyeon, Kim, Kanghyeon, Lee, Seonghyun, Moon, Janghyuk, Lee, Kyu Tae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 42
container_start_page
container_title Advanced functional materials
container_volume 34
creator Kim, Taehun
Chang, Hongjun
Song, Gawon
Lee, Suyeon
Kim, Kanghyeon
Lee, Seonghyun
Moon, Janghyuk
Lee, Kyu Tae
description Although all‐solid‐state batteries are suggested as a means to tackle the safety concerns associated with current Li‐ion batteries, there is presently a lack of comprehensive understanding regarding their thermal safety. In this context, critical factors contributing to the thermal runaway of thiophosphate solid electrolytes with charged Li1‐xNi0.8Co0.1Mn0.1O2 (NCM) under thermal and mechanical abuse conditions are demonstrated, considering parameters such as heating rate under thermal abuse conditions and the hybridization of S atom in structure. In particular, the thermal behavior of various solid electrolytes, including thiophosphates, thioantimonates, and halides, is investigated to clarify critical elements in Li6PS5Cl (LPSCl) contributing to its thermal instability when combined with charged NCM. Various ex situ analyses, along with density functional theory calculations, reveal a correlation between the hybridization of S atoms and the thermal instability of solid electrolytes, suggesting that sulfur acts as a key element triggering the thermal runaway of sulfide‐based solid electrolytes. The safety of thiophosphate‐based ASSBs remains uncertain, as a few recent literatures have reported the thermal runaway behavior of sulfide‐based ASSBs under abusive conditions. This work elucidates the factors influencing the thermal runaway of thiophosphate solid electrolytes, with a specific focus on clarifying the role of heating rates under thermal abuse and identifying critical elements in Li6PS5Cl that trigger ignition.
doi_str_mv 10.1002/adfm.202404806
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3116301434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116301434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2726-b5416e41401d60abd10e62e1626247e13f1250fb4e8b1588da1cc331eee09a233</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhoMoWKtXzwueU3d2t5v0WGOrQkXQCt7CJpmYLWk37m4o9eQj-Iw-iamVevQ0w8z3z8AXBOdAB0Apu1RFuRwwygQVMZUHQQ8kyJBTFh_ue3g5Dk6cW1AKUcRFL3hPrPY6VzWZqtwb60hiVt7qrPV69Uq8Ib5CMq_QLjvmsV2ptdoQU3YjbZrKuKZSHsmTqXVBJjXm3pp649GR0lgyruuvj8-f5bb6LXqlvEer0Z0GR6WqHZ791n7wPJ3Mk9tw9nBzl4xnYc4iJsNsKECiAEGhkFRlBVCUDEEyyUSEwEtgQ1pmAuMMhnFcKMhzzgER6UgxzvvBxe5uY81bi86nC9PaVfcy5QCykyK46KjBjsqtcc5imTZWL5XdpEDTrd906zfd--0Co11grWvc_EOn4-vp_V_2G9WZge0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116301434</pqid></control><display><type>article</type><title>Critical Factors Contributing to the Thermal Runaway of Thiophosphate Solid Electrolytes for All‐Solid‐State Batteries</title><source>Access via Wiley Online Library</source><creator>Kim, Taehun ; Chang, Hongjun ; Song, Gawon ; Lee, Suyeon ; Kim, Kanghyeon ; Lee, Seonghyun ; Moon, Janghyuk ; Lee, Kyu Tae</creator><creatorcontrib>Kim, Taehun ; Chang, Hongjun ; Song, Gawon ; Lee, Suyeon ; Kim, Kanghyeon ; Lee, Seonghyun ; Moon, Janghyuk ; Lee, Kyu Tae</creatorcontrib><description>Although all‐solid‐state batteries are suggested as a means to tackle the safety concerns associated with current Li‐ion batteries, there is presently a lack of comprehensive understanding regarding their thermal safety. In this context, critical factors contributing to the thermal runaway of thiophosphate solid electrolytes with charged Li1‐xNi0.8Co0.1Mn0.1O2 (NCM) under thermal and mechanical abuse conditions are demonstrated, considering parameters such as heating rate under thermal abuse conditions and the hybridization of S atom in structure. In particular, the thermal behavior of various solid electrolytes, including thiophosphates, thioantimonates, and halides, is investigated to clarify critical elements in Li6PS5Cl (LPSCl) contributing to its thermal instability when combined with charged NCM. Various ex situ analyses, along with density functional theory calculations, reveal a correlation between the hybridization of S atoms and the thermal instability of solid electrolytes, suggesting that sulfur acts as a key element triggering the thermal runaway of sulfide‐based solid electrolytes. The safety of thiophosphate‐based ASSBs remains uncertain, as a few recent literatures have reported the thermal runaway behavior of sulfide‐based ASSBs under abusive conditions. This work elucidates the factors influencing the thermal runaway of thiophosphate solid electrolytes, with a specific focus on clarifying the role of heating rates under thermal abuse and identifying critical elements in Li6PS5Cl that trigger ignition.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202404806</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>all‐solid‐state batteries ; Density functional theory ; Halides ; Heating rate ; hybridization ; Lithium-ion batteries ; Molten salt electrolytes ; safety ; Solid electrolytes ; Thermal instability ; Thermal runaway ; Thermodynamic properties</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (42), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2726-b5416e41401d60abd10e62e1626247e13f1250fb4e8b1588da1cc331eee09a233</cites><orcidid>0000-0003-2769-3372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202404806$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202404806$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kim, Taehun</creatorcontrib><creatorcontrib>Chang, Hongjun</creatorcontrib><creatorcontrib>Song, Gawon</creatorcontrib><creatorcontrib>Lee, Suyeon</creatorcontrib><creatorcontrib>Kim, Kanghyeon</creatorcontrib><creatorcontrib>Lee, Seonghyun</creatorcontrib><creatorcontrib>Moon, Janghyuk</creatorcontrib><creatorcontrib>Lee, Kyu Tae</creatorcontrib><title>Critical Factors Contributing to the Thermal Runaway of Thiophosphate Solid Electrolytes for All‐Solid‐State Batteries</title><title>Advanced functional materials</title><description>Although all‐solid‐state batteries are suggested as a means to tackle the safety concerns associated with current Li‐ion batteries, there is presently a lack of comprehensive understanding regarding their thermal safety. In this context, critical factors contributing to the thermal runaway of thiophosphate solid electrolytes with charged Li1‐xNi0.8Co0.1Mn0.1O2 (NCM) under thermal and mechanical abuse conditions are demonstrated, considering parameters such as heating rate under thermal abuse conditions and the hybridization of S atom in structure. In particular, the thermal behavior of various solid electrolytes, including thiophosphates, thioantimonates, and halides, is investigated to clarify critical elements in Li6PS5Cl (LPSCl) contributing to its thermal instability when combined with charged NCM. Various ex situ analyses, along with density functional theory calculations, reveal a correlation between the hybridization of S atoms and the thermal instability of solid electrolytes, suggesting that sulfur acts as a key element triggering the thermal runaway of sulfide‐based solid electrolytes. The safety of thiophosphate‐based ASSBs remains uncertain, as a few recent literatures have reported the thermal runaway behavior of sulfide‐based ASSBs under abusive conditions. This work elucidates the factors influencing the thermal runaway of thiophosphate solid electrolytes, with a specific focus on clarifying the role of heating rates under thermal abuse and identifying critical elements in Li6PS5Cl that trigger ignition.</description><subject>all‐solid‐state batteries</subject><subject>Density functional theory</subject><subject>Halides</subject><subject>Heating rate</subject><subject>hybridization</subject><subject>Lithium-ion batteries</subject><subject>Molten salt electrolytes</subject><subject>safety</subject><subject>Solid electrolytes</subject><subject>Thermal instability</subject><subject>Thermal runaway</subject><subject>Thermodynamic properties</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhoMoWKtXzwueU3d2t5v0WGOrQkXQCt7CJpmYLWk37m4o9eQj-Iw-iamVevQ0w8z3z8AXBOdAB0Apu1RFuRwwygQVMZUHQQ8kyJBTFh_ue3g5Dk6cW1AKUcRFL3hPrPY6VzWZqtwb60hiVt7qrPV69Uq8Ib5CMq_QLjvmsV2ptdoQU3YjbZrKuKZSHsmTqXVBJjXm3pp649GR0lgyruuvj8-f5bb6LXqlvEer0Z0GR6WqHZ791n7wPJ3Mk9tw9nBzl4xnYc4iJsNsKECiAEGhkFRlBVCUDEEyyUSEwEtgQ1pmAuMMhnFcKMhzzgER6UgxzvvBxe5uY81bi86nC9PaVfcy5QCykyK46KjBjsqtcc5imTZWL5XdpEDTrd906zfd--0Co11grWvc_EOn4-vp_V_2G9WZge0</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Kim, Taehun</creator><creator>Chang, Hongjun</creator><creator>Song, Gawon</creator><creator>Lee, Suyeon</creator><creator>Kim, Kanghyeon</creator><creator>Lee, Seonghyun</creator><creator>Moon, Janghyuk</creator><creator>Lee, Kyu Tae</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2769-3372</orcidid></search><sort><creationdate>20241001</creationdate><title>Critical Factors Contributing to the Thermal Runaway of Thiophosphate Solid Electrolytes for All‐Solid‐State Batteries</title><author>Kim, Taehun ; Chang, Hongjun ; Song, Gawon ; Lee, Suyeon ; Kim, Kanghyeon ; Lee, Seonghyun ; Moon, Janghyuk ; Lee, Kyu Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2726-b5416e41401d60abd10e62e1626247e13f1250fb4e8b1588da1cc331eee09a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>all‐solid‐state batteries</topic><topic>Density functional theory</topic><topic>Halides</topic><topic>Heating rate</topic><topic>hybridization</topic><topic>Lithium-ion batteries</topic><topic>Molten salt electrolytes</topic><topic>safety</topic><topic>Solid electrolytes</topic><topic>Thermal instability</topic><topic>Thermal runaway</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Taehun</creatorcontrib><creatorcontrib>Chang, Hongjun</creatorcontrib><creatorcontrib>Song, Gawon</creatorcontrib><creatorcontrib>Lee, Suyeon</creatorcontrib><creatorcontrib>Kim, Kanghyeon</creatorcontrib><creatorcontrib>Lee, Seonghyun</creatorcontrib><creatorcontrib>Moon, Janghyuk</creatorcontrib><creatorcontrib>Lee, Kyu Tae</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Taehun</au><au>Chang, Hongjun</au><au>Song, Gawon</au><au>Lee, Suyeon</au><au>Kim, Kanghyeon</au><au>Lee, Seonghyun</au><au>Moon, Janghyuk</au><au>Lee, Kyu Tae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical Factors Contributing to the Thermal Runaway of Thiophosphate Solid Electrolytes for All‐Solid‐State Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>42</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Although all‐solid‐state batteries are suggested as a means to tackle the safety concerns associated with current Li‐ion batteries, there is presently a lack of comprehensive understanding regarding their thermal safety. In this context, critical factors contributing to the thermal runaway of thiophosphate solid electrolytes with charged Li1‐xNi0.8Co0.1Mn0.1O2 (NCM) under thermal and mechanical abuse conditions are demonstrated, considering parameters such as heating rate under thermal abuse conditions and the hybridization of S atom in structure. In particular, the thermal behavior of various solid electrolytes, including thiophosphates, thioantimonates, and halides, is investigated to clarify critical elements in Li6PS5Cl (LPSCl) contributing to its thermal instability when combined with charged NCM. Various ex situ analyses, along with density functional theory calculations, reveal a correlation between the hybridization of S atoms and the thermal instability of solid electrolytes, suggesting that sulfur acts as a key element triggering the thermal runaway of sulfide‐based solid electrolytes. The safety of thiophosphate‐based ASSBs remains uncertain, as a few recent literatures have reported the thermal runaway behavior of sulfide‐based ASSBs under abusive conditions. This work elucidates the factors influencing the thermal runaway of thiophosphate solid electrolytes, with a specific focus on clarifying the role of heating rates under thermal abuse and identifying critical elements in Li6PS5Cl that trigger ignition.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202404806</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2769-3372</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-10, Vol.34 (42), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3116301434
source Access via Wiley Online Library
subjects all‐solid‐state batteries
Density functional theory
Halides
Heating rate
hybridization
Lithium-ion batteries
Molten salt electrolytes
safety
Solid electrolytes
Thermal instability
Thermal runaway
Thermodynamic properties
title Critical Factors Contributing to the Thermal Runaway of Thiophosphate Solid Electrolytes for All‐Solid‐State Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20Factors%20Contributing%20to%20the%20Thermal%20Runaway%20of%20Thiophosphate%20Solid%20Electrolytes%20for%20All%E2%80%90Solid%E2%80%90State%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Kim,%20Taehun&rft.date=2024-10-01&rft.volume=34&rft.issue=42&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202404806&rft_dat=%3Cproquest_cross%3E3116301434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116301434&rft_id=info:pmid/&rfr_iscdi=true