Critical Factors Contributing to the Thermal Runaway of Thiophosphate Solid Electrolytes for All‐Solid‐State Batteries
Although all‐solid‐state batteries are suggested as a means to tackle the safety concerns associated with current Li‐ion batteries, there is presently a lack of comprehensive understanding regarding their thermal safety. In this context, critical factors contributing to the thermal runaway of thioph...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-10, Vol.34 (42), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 42 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Kim, Taehun Chang, Hongjun Song, Gawon Lee, Suyeon Kim, Kanghyeon Lee, Seonghyun Moon, Janghyuk Lee, Kyu Tae |
description | Although all‐solid‐state batteries are suggested as a means to tackle the safety concerns associated with current Li‐ion batteries, there is presently a lack of comprehensive understanding regarding their thermal safety. In this context, critical factors contributing to the thermal runaway of thiophosphate solid electrolytes with charged Li1‐xNi0.8Co0.1Mn0.1O2 (NCM) under thermal and mechanical abuse conditions are demonstrated, considering parameters such as heating rate under thermal abuse conditions and the hybridization of S atom in structure. In particular, the thermal behavior of various solid electrolytes, including thiophosphates, thioantimonates, and halides, is investigated to clarify critical elements in Li6PS5Cl (LPSCl) contributing to its thermal instability when combined with charged NCM. Various ex situ analyses, along with density functional theory calculations, reveal a correlation between the hybridization of S atoms and the thermal instability of solid electrolytes, suggesting that sulfur acts as a key element triggering the thermal runaway of sulfide‐based solid electrolytes.
The safety of thiophosphate‐based ASSBs remains uncertain, as a few recent literatures have reported the thermal runaway behavior of sulfide‐based ASSBs under abusive conditions. This work elucidates the factors influencing the thermal runaway of thiophosphate solid electrolytes, with a specific focus on clarifying the role of heating rates under thermal abuse and identifying critical elements in Li6PS5Cl that trigger ignition. |
doi_str_mv | 10.1002/adfm.202404806 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3116301434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116301434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2726-b5416e41401d60abd10e62e1626247e13f1250fb4e8b1588da1cc331eee09a233</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhoMoWKtXzwueU3d2t5v0WGOrQkXQCt7CJpmYLWk37m4o9eQj-Iw-iamVevQ0w8z3z8AXBOdAB0Apu1RFuRwwygQVMZUHQQ8kyJBTFh_ue3g5Dk6cW1AKUcRFL3hPrPY6VzWZqtwb60hiVt7qrPV69Uq8Ib5CMq_QLjvmsV2ptdoQU3YjbZrKuKZSHsmTqXVBJjXm3pp649GR0lgyruuvj8-f5bb6LXqlvEer0Z0GR6WqHZ791n7wPJ3Mk9tw9nBzl4xnYc4iJsNsKECiAEGhkFRlBVCUDEEyyUSEwEtgQ1pmAuMMhnFcKMhzzgER6UgxzvvBxe5uY81bi86nC9PaVfcy5QCykyK46KjBjsqtcc5imTZWL5XdpEDTrd906zfd--0Co11grWvc_EOn4-vp_V_2G9WZge0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116301434</pqid></control><display><type>article</type><title>Critical Factors Contributing to the Thermal Runaway of Thiophosphate Solid Electrolytes for All‐Solid‐State Batteries</title><source>Access via Wiley Online Library</source><creator>Kim, Taehun ; Chang, Hongjun ; Song, Gawon ; Lee, Suyeon ; Kim, Kanghyeon ; Lee, Seonghyun ; Moon, Janghyuk ; Lee, Kyu Tae</creator><creatorcontrib>Kim, Taehun ; Chang, Hongjun ; Song, Gawon ; Lee, Suyeon ; Kim, Kanghyeon ; Lee, Seonghyun ; Moon, Janghyuk ; Lee, Kyu Tae</creatorcontrib><description>Although all‐solid‐state batteries are suggested as a means to tackle the safety concerns associated with current Li‐ion batteries, there is presently a lack of comprehensive understanding regarding their thermal safety. In this context, critical factors contributing to the thermal runaway of thiophosphate solid electrolytes with charged Li1‐xNi0.8Co0.1Mn0.1O2 (NCM) under thermal and mechanical abuse conditions are demonstrated, considering parameters such as heating rate under thermal abuse conditions and the hybridization of S atom in structure. In particular, the thermal behavior of various solid electrolytes, including thiophosphates, thioantimonates, and halides, is investigated to clarify critical elements in Li6PS5Cl (LPSCl) contributing to its thermal instability when combined with charged NCM. Various ex situ analyses, along with density functional theory calculations, reveal a correlation between the hybridization of S atoms and the thermal instability of solid electrolytes, suggesting that sulfur acts as a key element triggering the thermal runaway of sulfide‐based solid electrolytes.
The safety of thiophosphate‐based ASSBs remains uncertain, as a few recent literatures have reported the thermal runaway behavior of sulfide‐based ASSBs under abusive conditions. This work elucidates the factors influencing the thermal runaway of thiophosphate solid electrolytes, with a specific focus on clarifying the role of heating rates under thermal abuse and identifying critical elements in Li6PS5Cl that trigger ignition.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202404806</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>all‐solid‐state batteries ; Density functional theory ; Halides ; Heating rate ; hybridization ; Lithium-ion batteries ; Molten salt electrolytes ; safety ; Solid electrolytes ; Thermal instability ; Thermal runaway ; Thermodynamic properties</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (42), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2726-b5416e41401d60abd10e62e1626247e13f1250fb4e8b1588da1cc331eee09a233</cites><orcidid>0000-0003-2769-3372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202404806$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202404806$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kim, Taehun</creatorcontrib><creatorcontrib>Chang, Hongjun</creatorcontrib><creatorcontrib>Song, Gawon</creatorcontrib><creatorcontrib>Lee, Suyeon</creatorcontrib><creatorcontrib>Kim, Kanghyeon</creatorcontrib><creatorcontrib>Lee, Seonghyun</creatorcontrib><creatorcontrib>Moon, Janghyuk</creatorcontrib><creatorcontrib>Lee, Kyu Tae</creatorcontrib><title>Critical Factors Contributing to the Thermal Runaway of Thiophosphate Solid Electrolytes for All‐Solid‐State Batteries</title><title>Advanced functional materials</title><description>Although all‐solid‐state batteries are suggested as a means to tackle the safety concerns associated with current Li‐ion batteries, there is presently a lack of comprehensive understanding regarding their thermal safety. In this context, critical factors contributing to the thermal runaway of thiophosphate solid electrolytes with charged Li1‐xNi0.8Co0.1Mn0.1O2 (NCM) under thermal and mechanical abuse conditions are demonstrated, considering parameters such as heating rate under thermal abuse conditions and the hybridization of S atom in structure. In particular, the thermal behavior of various solid electrolytes, including thiophosphates, thioantimonates, and halides, is investigated to clarify critical elements in Li6PS5Cl (LPSCl) contributing to its thermal instability when combined with charged NCM. Various ex situ analyses, along with density functional theory calculations, reveal a correlation between the hybridization of S atoms and the thermal instability of solid electrolytes, suggesting that sulfur acts as a key element triggering the thermal runaway of sulfide‐based solid electrolytes.
The safety of thiophosphate‐based ASSBs remains uncertain, as a few recent literatures have reported the thermal runaway behavior of sulfide‐based ASSBs under abusive conditions. This work elucidates the factors influencing the thermal runaway of thiophosphate solid electrolytes, with a specific focus on clarifying the role of heating rates under thermal abuse and identifying critical elements in Li6PS5Cl that trigger ignition.</description><subject>all‐solid‐state batteries</subject><subject>Density functional theory</subject><subject>Halides</subject><subject>Heating rate</subject><subject>hybridization</subject><subject>Lithium-ion batteries</subject><subject>Molten salt electrolytes</subject><subject>safety</subject><subject>Solid electrolytes</subject><subject>Thermal instability</subject><subject>Thermal runaway</subject><subject>Thermodynamic properties</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhoMoWKtXzwueU3d2t5v0WGOrQkXQCt7CJpmYLWk37m4o9eQj-Iw-iamVevQ0w8z3z8AXBOdAB0Apu1RFuRwwygQVMZUHQQ8kyJBTFh_ue3g5Dk6cW1AKUcRFL3hPrPY6VzWZqtwb60hiVt7qrPV69Uq8Ib5CMq_QLjvmsV2ptdoQU3YjbZrKuKZSHsmTqXVBJjXm3pp649GR0lgyruuvj8-f5bb6LXqlvEer0Z0GR6WqHZ791n7wPJ3Mk9tw9nBzl4xnYc4iJsNsKECiAEGhkFRlBVCUDEEyyUSEwEtgQ1pmAuMMhnFcKMhzzgER6UgxzvvBxe5uY81bi86nC9PaVfcy5QCykyK46KjBjsqtcc5imTZWL5XdpEDTrd906zfd--0Co11grWvc_EOn4-vp_V_2G9WZge0</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Kim, Taehun</creator><creator>Chang, Hongjun</creator><creator>Song, Gawon</creator><creator>Lee, Suyeon</creator><creator>Kim, Kanghyeon</creator><creator>Lee, Seonghyun</creator><creator>Moon, Janghyuk</creator><creator>Lee, Kyu Tae</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2769-3372</orcidid></search><sort><creationdate>20241001</creationdate><title>Critical Factors Contributing to the Thermal Runaway of Thiophosphate Solid Electrolytes for All‐Solid‐State Batteries</title><author>Kim, Taehun ; Chang, Hongjun ; Song, Gawon ; Lee, Suyeon ; Kim, Kanghyeon ; Lee, Seonghyun ; Moon, Janghyuk ; Lee, Kyu Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2726-b5416e41401d60abd10e62e1626247e13f1250fb4e8b1588da1cc331eee09a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>all‐solid‐state batteries</topic><topic>Density functional theory</topic><topic>Halides</topic><topic>Heating rate</topic><topic>hybridization</topic><topic>Lithium-ion batteries</topic><topic>Molten salt electrolytes</topic><topic>safety</topic><topic>Solid electrolytes</topic><topic>Thermal instability</topic><topic>Thermal runaway</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Taehun</creatorcontrib><creatorcontrib>Chang, Hongjun</creatorcontrib><creatorcontrib>Song, Gawon</creatorcontrib><creatorcontrib>Lee, Suyeon</creatorcontrib><creatorcontrib>Kim, Kanghyeon</creatorcontrib><creatorcontrib>Lee, Seonghyun</creatorcontrib><creatorcontrib>Moon, Janghyuk</creatorcontrib><creatorcontrib>Lee, Kyu Tae</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Taehun</au><au>Chang, Hongjun</au><au>Song, Gawon</au><au>Lee, Suyeon</au><au>Kim, Kanghyeon</au><au>Lee, Seonghyun</au><au>Moon, Janghyuk</au><au>Lee, Kyu Tae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical Factors Contributing to the Thermal Runaway of Thiophosphate Solid Electrolytes for All‐Solid‐State Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>42</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Although all‐solid‐state batteries are suggested as a means to tackle the safety concerns associated with current Li‐ion batteries, there is presently a lack of comprehensive understanding regarding their thermal safety. In this context, critical factors contributing to the thermal runaway of thiophosphate solid electrolytes with charged Li1‐xNi0.8Co0.1Mn0.1O2 (NCM) under thermal and mechanical abuse conditions are demonstrated, considering parameters such as heating rate under thermal abuse conditions and the hybridization of S atom in structure. In particular, the thermal behavior of various solid electrolytes, including thiophosphates, thioantimonates, and halides, is investigated to clarify critical elements in Li6PS5Cl (LPSCl) contributing to its thermal instability when combined with charged NCM. Various ex situ analyses, along with density functional theory calculations, reveal a correlation between the hybridization of S atoms and the thermal instability of solid electrolytes, suggesting that sulfur acts as a key element triggering the thermal runaway of sulfide‐based solid electrolytes.
The safety of thiophosphate‐based ASSBs remains uncertain, as a few recent literatures have reported the thermal runaway behavior of sulfide‐based ASSBs under abusive conditions. This work elucidates the factors influencing the thermal runaway of thiophosphate solid electrolytes, with a specific focus on clarifying the role of heating rates under thermal abuse and identifying critical elements in Li6PS5Cl that trigger ignition.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202404806</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2769-3372</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-10, Vol.34 (42), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3116301434 |
source | Access via Wiley Online Library |
subjects | all‐solid‐state batteries Density functional theory Halides Heating rate hybridization Lithium-ion batteries Molten salt electrolytes safety Solid electrolytes Thermal instability Thermal runaway Thermodynamic properties |
title | Critical Factors Contributing to the Thermal Runaway of Thiophosphate Solid Electrolytes for All‐Solid‐State Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20Factors%20Contributing%20to%20the%20Thermal%20Runaway%20of%20Thiophosphate%20Solid%20Electrolytes%20for%20All%E2%80%90Solid%E2%80%90State%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Kim,%20Taehun&rft.date=2024-10-01&rft.volume=34&rft.issue=42&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202404806&rft_dat=%3Cproquest_cross%3E3116301434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116301434&rft_id=info:pmid/&rfr_iscdi=true |