Mass transfer to a nanoelectrocatalyst

There are few studies of mass transfer to nanospheres (1 nm ≤ dp ≤ 100 nm). We have experimentally investigated the electrocatalytic reduction of hexacyanoferrate (III) to hexacyanoferrate (II) on gold nanospheres. The surface flux is insensitive to particle sizes of dp ≥ 30 nm and is essentially id...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2024-11, Vol.70 (11), p.n/a
Hauptverfasser: Robinson, Klaudia Mata, Jordan, Matthew, Wiesner, Theodore F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title AIChE journal
container_volume 70
creator Robinson, Klaudia Mata
Jordan, Matthew
Wiesner, Theodore F.
description There are few studies of mass transfer to nanospheres (1 nm ≤ dp ≤ 100 nm). We have experimentally investigated the electrocatalytic reduction of hexacyanoferrate (III) to hexacyanoferrate (II) on gold nanospheres. The surface flux is insensitive to particle sizes of dp ≥ 30 nm and is essentially identical to that for a diffusion‐limited system. However, the measured fluxes in the range 5 nm ≤ dp ≤ 30 nm were one to three orders of magnitude smaller than predicted by a purely diffusion‐limited model. Using mathematical modeling, we evaluated six mechanisms affecting mass transfer to a nanoparticle in our experimental system. Among potential acceleratory effects, the curvature effect sharply increased the surface flux by a factor of 20. Other acceleratory effects of Brownian advection and enhanced surface reactivity played negligible roles, the latter due to screening by a charged stabilizing layer. Deceleratory effects of increased tortuosity by stabilizing layers and particle aggregation also played negligible roles. Electrostatic repulsion dominated mass transfer for dp ≤ 30 nm. This finding suggests tuning the charge and the tortuosity of the stabilizer layer to potentiate the flux will be useful in engineering nanosuspensions.
doi_str_mv 10.1002/aic.18530
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3115757503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115757503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1870-75456d4951e7c3c517f93da6288068b09e0fb9348f2507b3389ed81ed55b6f1d3</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMoWFcPvkFBEDx0d6ZpmuS4FFcXVrzoOaRpAl1quyZZZN_eaL3KHIb5-WYGPkJuEZYIUK50b5YoGIUzkiGreMEksHOSAQAWKcBLchXCPk0lF2VG7l90CHn0egzO-jxOuc5HPU52sCb6yeioh1OI1-TC6SHYm7--IO-bx7fmudi9Pm2b9a4wKDgUnFWs7irJ0HJDDUPuJO10XQoBtWhBWnCtpJVwJQPeUiqk7QTajrG2dtjRBbmb7x789Hm0Iar9dPRjeqkoIuOpgCbqYaaMn0Lw1qmD7z-0PykE9aNBJQ3qV0NiVzP71Q_29D-o1ttm3vgG7RJb4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115757503</pqid></control><display><type>article</type><title>Mass transfer to a nanoelectrocatalyst</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Robinson, Klaudia Mata ; Jordan, Matthew ; Wiesner, Theodore F.</creator><creatorcontrib>Robinson, Klaudia Mata ; Jordan, Matthew ; Wiesner, Theodore F.</creatorcontrib><description>There are few studies of mass transfer to nanospheres (1 nm ≤ dp ≤ 100 nm). We have experimentally investigated the electrocatalytic reduction of hexacyanoferrate (III) to hexacyanoferrate (II) on gold nanospheres. The surface flux is insensitive to particle sizes of dp ≥ 30 nm and is essentially identical to that for a diffusion‐limited system. However, the measured fluxes in the range 5 nm ≤ dp ≤ 30 nm were one to three orders of magnitude smaller than predicted by a purely diffusion‐limited model. Using mathematical modeling, we evaluated six mechanisms affecting mass transfer to a nanoparticle in our experimental system. Among potential acceleratory effects, the curvature effect sharply increased the surface flux by a factor of 20. Other acceleratory effects of Brownian advection and enhanced surface reactivity played negligible roles, the latter due to screening by a charged stabilizing layer. Deceleratory effects of increased tortuosity by stabilizing layers and particle aggregation also played negligible roles. Electrostatic repulsion dominated mass transfer for dp ≤ 30 nm. This finding suggests tuning the charge and the tortuosity of the stabilizer layer to potentiate the flux will be useful in engineering nanosuspensions.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.18530</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Chemical reduction ; colloid ; Diffusion layers ; electrocatalysis ; Fluctuations ; gold ; Mass transfer ; Mathematical models ; nanocatalyst ; Nanoparticles ; Nanospheres ; Tortuosity</subject><ispartof>AIChE journal, 2024-11, Vol.70 (11), p.n/a</ispartof><rights>2024 American Institute of Chemical Engineers.</rights><rights>2024 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1870-75456d4951e7c3c517f93da6288068b09e0fb9348f2507b3389ed81ed55b6f1d3</cites><orcidid>0000-0002-6599-2106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.18530$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.18530$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Robinson, Klaudia Mata</creatorcontrib><creatorcontrib>Jordan, Matthew</creatorcontrib><creatorcontrib>Wiesner, Theodore F.</creatorcontrib><title>Mass transfer to a nanoelectrocatalyst</title><title>AIChE journal</title><description>There are few studies of mass transfer to nanospheres (1 nm ≤ dp ≤ 100 nm). We have experimentally investigated the electrocatalytic reduction of hexacyanoferrate (III) to hexacyanoferrate (II) on gold nanospheres. The surface flux is insensitive to particle sizes of dp ≥ 30 nm and is essentially identical to that for a diffusion‐limited system. However, the measured fluxes in the range 5 nm ≤ dp ≤ 30 nm were one to three orders of magnitude smaller than predicted by a purely diffusion‐limited model. Using mathematical modeling, we evaluated six mechanisms affecting mass transfer to a nanoparticle in our experimental system. Among potential acceleratory effects, the curvature effect sharply increased the surface flux by a factor of 20. Other acceleratory effects of Brownian advection and enhanced surface reactivity played negligible roles, the latter due to screening by a charged stabilizing layer. Deceleratory effects of increased tortuosity by stabilizing layers and particle aggregation also played negligible roles. Electrostatic repulsion dominated mass transfer for dp ≤ 30 nm. This finding suggests tuning the charge and the tortuosity of the stabilizer layer to potentiate the flux will be useful in engineering nanosuspensions.</description><subject>Chemical reduction</subject><subject>colloid</subject><subject>Diffusion layers</subject><subject>electrocatalysis</subject><subject>Fluctuations</subject><subject>gold</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>nanocatalyst</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><subject>Tortuosity</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAQhoMoWFcPvkFBEDx0d6ZpmuS4FFcXVrzoOaRpAl1quyZZZN_eaL3KHIb5-WYGPkJuEZYIUK50b5YoGIUzkiGreMEksHOSAQAWKcBLchXCPk0lF2VG7l90CHn0egzO-jxOuc5HPU52sCb6yeioh1OI1-TC6SHYm7--IO-bx7fmudi9Pm2b9a4wKDgUnFWs7irJ0HJDDUPuJO10XQoBtWhBWnCtpJVwJQPeUiqk7QTajrG2dtjRBbmb7x789Hm0Iar9dPRjeqkoIuOpgCbqYaaMn0Lw1qmD7z-0PykE9aNBJQ3qV0NiVzP71Q_29D-o1ttm3vgG7RJb4Q</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Robinson, Klaudia Mata</creator><creator>Jordan, Matthew</creator><creator>Wiesner, Theodore F.</creator><general>John Wiley &amp; Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6599-2106</orcidid></search><sort><creationdate>202411</creationdate><title>Mass transfer to a nanoelectrocatalyst</title><author>Robinson, Klaudia Mata ; Jordan, Matthew ; Wiesner, Theodore F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1870-75456d4951e7c3c517f93da6288068b09e0fb9348f2507b3389ed81ed55b6f1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical reduction</topic><topic>colloid</topic><topic>Diffusion layers</topic><topic>electrocatalysis</topic><topic>Fluctuations</topic><topic>gold</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>nanocatalyst</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><topic>Tortuosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, Klaudia Mata</creatorcontrib><creatorcontrib>Jordan, Matthew</creatorcontrib><creatorcontrib>Wiesner, Theodore F.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, Klaudia Mata</au><au>Jordan, Matthew</au><au>Wiesner, Theodore F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass transfer to a nanoelectrocatalyst</atitle><jtitle>AIChE journal</jtitle><date>2024-11</date><risdate>2024</risdate><volume>70</volume><issue>11</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>There are few studies of mass transfer to nanospheres (1 nm ≤ dp ≤ 100 nm). We have experimentally investigated the electrocatalytic reduction of hexacyanoferrate (III) to hexacyanoferrate (II) on gold nanospheres. The surface flux is insensitive to particle sizes of dp ≥ 30 nm and is essentially identical to that for a diffusion‐limited system. However, the measured fluxes in the range 5 nm ≤ dp ≤ 30 nm were one to three orders of magnitude smaller than predicted by a purely diffusion‐limited model. Using mathematical modeling, we evaluated six mechanisms affecting mass transfer to a nanoparticle in our experimental system. Among potential acceleratory effects, the curvature effect sharply increased the surface flux by a factor of 20. Other acceleratory effects of Brownian advection and enhanced surface reactivity played negligible roles, the latter due to screening by a charged stabilizing layer. Deceleratory effects of increased tortuosity by stabilizing layers and particle aggregation also played negligible roles. Electrostatic repulsion dominated mass transfer for dp ≤ 30 nm. This finding suggests tuning the charge and the tortuosity of the stabilizer layer to potentiate the flux will be useful in engineering nanosuspensions.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/aic.18530</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6599-2106</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2024-11, Vol.70 (11), p.n/a
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_3115757503
source Wiley Online Library Journals Frontfile Complete
subjects Chemical reduction
colloid
Diffusion layers
electrocatalysis
Fluctuations
gold
Mass transfer
Mathematical models
nanocatalyst
Nanoparticles
Nanospheres
Tortuosity
title Mass transfer to a nanoelectrocatalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A18%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%20transfer%20to%20a%20nanoelectrocatalyst&rft.jtitle=AIChE%20journal&rft.au=Robinson,%20Klaudia%20Mata&rft.date=2024-11&rft.volume=70&rft.issue=11&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.18530&rft_dat=%3Cproquest_cross%3E3115757503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115757503&rft_id=info:pmid/&rfr_iscdi=true