Smoothed pseudo-population bootstrap methods with applications to finite population quantiles

This paper introduces smoothed pseudo-population bootstrap methods for the purposes of variance estimation and the construction of confidence intervals for finite population quantiles. In an i.i.d. context, it has been shown that resampling from a smoothed estimate of the distribution function inste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: McNealis, Vanessa, Léger, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator McNealis, Vanessa
Léger, Christian
description This paper introduces smoothed pseudo-population bootstrap methods for the purposes of variance estimation and the construction of confidence intervals for finite population quantiles. In an i.i.d. context, it has been shown that resampling from a smoothed estimate of the distribution function instead of the usual empirical distribution function can improve the convergence rate of the bootstrap variance estimator of a sample quantile. We extend the smoothed bootstrap to the survey sampling framework by implementing it in pseudo-population bootstrap methods for high entropy, single-stage survey designs, such as simple random sampling without replacement and Poisson sampling. Given a kernel function and a bandwidth, it consists of smoothing the pseudo-population from which bootstrap samples are drawn using the original sampling design. Given that the implementation of the proposed algorithms requires the specification of the bandwidth, we develop a plug-in selection method along with a grid search selection method based on a bootstrap estimate of the mean squared error. Simulation results suggest a gain in efficiency associated with the smoothed approach as compared to the standard pseudo-population bootstrap for estimating the variance of a quantile estimator together with mixed results regarding confidence interval coverage.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3115596946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115596946</sourcerecordid><originalsourceid>FETCH-proquest_journals_31155969463</originalsourceid><addsrcrecordid>eNqNi7EKwjAUAIMgWLT_EHAutElT7SyKu64i0aY0Jc1L-17w9y3i4Oh0w90tWCKkLLJ9KcSKpYh9nuei2gmlZMJulwGAOtPwgCY2kAUI0Wmy4PljNkiTDnww1EGD_GWp4zoEZ5-fBDkBb623ZPjPOEbtyTqDG7ZstUOTfrlm29PxejhnYYIxGqR7D3Hys7rLolCqruqykv9VbxoWRcc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115596946</pqid></control><display><type>article</type><title>Smoothed pseudo-population bootstrap methods with applications to finite population quantiles</title><source>Free E- Journals</source><creator>McNealis, Vanessa ; Léger, Christian</creator><creatorcontrib>McNealis, Vanessa ; Léger, Christian</creatorcontrib><description>This paper introduces smoothed pseudo-population bootstrap methods for the purposes of variance estimation and the construction of confidence intervals for finite population quantiles. In an i.i.d. context, it has been shown that resampling from a smoothed estimate of the distribution function instead of the usual empirical distribution function can improve the convergence rate of the bootstrap variance estimator of a sample quantile. We extend the smoothed bootstrap to the survey sampling framework by implementing it in pseudo-population bootstrap methods for high entropy, single-stage survey designs, such as simple random sampling without replacement and Poisson sampling. Given a kernel function and a bandwidth, it consists of smoothing the pseudo-population from which bootstrap samples are drawn using the original sampling design. Given that the implementation of the proposed algorithms requires the specification of the bandwidth, we develop a plug-in selection method along with a grid search selection method based on a bootstrap estimate of the mean squared error. Simulation results suggest a gain in efficiency associated with the smoothed approach as compared to the standard pseudo-population bootstrap for estimating the variance of a quantile estimator together with mixed results regarding confidence interval coverage.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Confidence intervals ; Distribution functions ; Estimation ; Kernel functions ; Quantiles ; Random sampling ; Resampling ; Sampling designs ; Statistical analysis ; Statistical methods ; Variance</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>McNealis, Vanessa</creatorcontrib><creatorcontrib>Léger, Christian</creatorcontrib><title>Smoothed pseudo-population bootstrap methods with applications to finite population quantiles</title><title>arXiv.org</title><description>This paper introduces smoothed pseudo-population bootstrap methods for the purposes of variance estimation and the construction of confidence intervals for finite population quantiles. In an i.i.d. context, it has been shown that resampling from a smoothed estimate of the distribution function instead of the usual empirical distribution function can improve the convergence rate of the bootstrap variance estimator of a sample quantile. We extend the smoothed bootstrap to the survey sampling framework by implementing it in pseudo-population bootstrap methods for high entropy, single-stage survey designs, such as simple random sampling without replacement and Poisson sampling. Given a kernel function and a bandwidth, it consists of smoothing the pseudo-population from which bootstrap samples are drawn using the original sampling design. Given that the implementation of the proposed algorithms requires the specification of the bandwidth, we develop a plug-in selection method along with a grid search selection method based on a bootstrap estimate of the mean squared error. Simulation results suggest a gain in efficiency associated with the smoothed approach as compared to the standard pseudo-population bootstrap for estimating the variance of a quantile estimator together with mixed results regarding confidence interval coverage.</description><subject>Algorithms</subject><subject>Confidence intervals</subject><subject>Distribution functions</subject><subject>Estimation</subject><subject>Kernel functions</subject><subject>Quantiles</subject><subject>Random sampling</subject><subject>Resampling</subject><subject>Sampling designs</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Variance</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7EKwjAUAIMgWLT_EHAutElT7SyKu64i0aY0Jc1L-17w9y3i4Oh0w90tWCKkLLJ9KcSKpYh9nuei2gmlZMJulwGAOtPwgCY2kAUI0Wmy4PljNkiTDnww1EGD_GWp4zoEZ5-fBDkBb623ZPjPOEbtyTqDG7ZstUOTfrlm29PxejhnYYIxGqR7D3Hys7rLolCqruqykv9VbxoWRcc</recordid><startdate>20241010</startdate><enddate>20241010</enddate><creator>McNealis, Vanessa</creator><creator>Léger, Christian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241010</creationdate><title>Smoothed pseudo-population bootstrap methods with applications to finite population quantiles</title><author>McNealis, Vanessa ; Léger, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31155969463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Confidence intervals</topic><topic>Distribution functions</topic><topic>Estimation</topic><topic>Kernel functions</topic><topic>Quantiles</topic><topic>Random sampling</topic><topic>Resampling</topic><topic>Sampling designs</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Variance</topic><toplevel>online_resources</toplevel><creatorcontrib>McNealis, Vanessa</creatorcontrib><creatorcontrib>Léger, Christian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McNealis, Vanessa</au><au>Léger, Christian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Smoothed pseudo-population bootstrap methods with applications to finite population quantiles</atitle><jtitle>arXiv.org</jtitle><date>2024-10-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper introduces smoothed pseudo-population bootstrap methods for the purposes of variance estimation and the construction of confidence intervals for finite population quantiles. In an i.i.d. context, it has been shown that resampling from a smoothed estimate of the distribution function instead of the usual empirical distribution function can improve the convergence rate of the bootstrap variance estimator of a sample quantile. We extend the smoothed bootstrap to the survey sampling framework by implementing it in pseudo-population bootstrap methods for high entropy, single-stage survey designs, such as simple random sampling without replacement and Poisson sampling. Given a kernel function and a bandwidth, it consists of smoothing the pseudo-population from which bootstrap samples are drawn using the original sampling design. Given that the implementation of the proposed algorithms requires the specification of the bandwidth, we develop a plug-in selection method along with a grid search selection method based on a bootstrap estimate of the mean squared error. Simulation results suggest a gain in efficiency associated with the smoothed approach as compared to the standard pseudo-population bootstrap for estimating the variance of a quantile estimator together with mixed results regarding confidence interval coverage.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3115596946
source Free E- Journals
subjects Algorithms
Confidence intervals
Distribution functions
Estimation
Kernel functions
Quantiles
Random sampling
Resampling
Sampling designs
Statistical analysis
Statistical methods
Variance
title Smoothed pseudo-population bootstrap methods with applications to finite population quantiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Smoothed%20pseudo-population%20bootstrap%20methods%20with%20applications%20to%20finite%20population%20quantiles&rft.jtitle=arXiv.org&rft.au=McNealis,%20Vanessa&rft.date=2024-10-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3115596946%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115596946&rft_id=info:pmid/&rfr_iscdi=true