Machine Learning-based feasibility estimation of digital blocks in BCD technology

Analog-on-Top Mixed Signal (AMS) Integrated Circuit (IC) design is a time-consuming process predominantly carried out by hand. Within this flow, usually, some area is reserved by the top-level integrator for the placement of digital blocks. Specific features of the area, such as size and shape, have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Faraone, Gabriele, Daghero, Francesco, Serianni, Eugenio, Licastro, Dario, Nicola Di Carolo, Grosso, Michelangelo, Franchino, Giovanna Antonella, Pagliari, Daniele Jahier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Analog-on-Top Mixed Signal (AMS) Integrated Circuit (IC) design is a time-consuming process predominantly carried out by hand. Within this flow, usually, some area is reserved by the top-level integrator for the placement of digital blocks. Specific features of the area, such as size and shape, have a relevant impact on the possibility of implementing the digital logic with the required functionality. We present a Machine Learning (ML)-based evaluation methodology for predicting the feasibility of digital implementation using a set of high-level features. This approach aims to avoid time-consuming Place-and-Route trials, enabling rapid feedback between Digital and Analog Back-End designers during top-level placement.
ISSN:2331-8422