Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction
Generative modeling of discrete data underlies important applications spanning text-based agents like ChatGPT to the design of the very building blocks of life in protein sequences. However, application domains need to exert control over the generated data by steering the generative process - typica...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Rector-Brooks, Jarrid Mohsin Hasan Peng, Zhangzhi Quinn, Zachary Liu, Chenghao Mittal, Sarthak Dziri, Nouha Bronstein, Michael Bengio, Yoshua Chatterjee, Pranam Tong, Alexander Bose, Avishek Joey |
description | Generative modeling of discrete data underlies important applications spanning text-based agents like ChatGPT to the design of the very building blocks of life in protein sequences. However, application domains need to exert control over the generated data by steering the generative process - typically via RLHF - to satisfy a specified property, reward, or affinity metric. In this paper, we study the problem of steering Masked Diffusion Models (MDMs), a recent class of discrete diffusion models that offer a compelling alternative to traditional autoregressive models. We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference by learning to sample from a target Bayesian posterior. Our DDPP framework leads to a family of three novel objectives that are all simulation-free, and thus scalable while applying to general non-differentiable reward functions. Empirically, we instantiate DDPP by steering MDMs to perform class-conditional pixel-level image modeling, RLHF-based alignment of MDMs using text-based rewards, and finetuning protein language models to generate more diverse secondary structures and shorter proteins. We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3115595731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115595731</sourcerecordid><originalsourceid>FETCH-proquest_journals_31155957313</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgWLT_EHBdaBJjde0DN4WCui6hvZXUkqu5qd9vBBcuXc3AmTMTlkilRLZZSTljKVGf57lcF1JrlbDrOQB46268NHSHlu8tNR4CxNJ1I1l0vMQWBuIva34oOLT08SqkEB_Q88pDa5sQlQWbdmYgSL85Z8vj4bI7ZQ-PzxEo1D2O3kVUKyG03upCCfXf6g3TxUEJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115595731</pqid></control><display><type>article</type><title>Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction</title><source>Free E- Journals</source><creator>Rector-Brooks, Jarrid ; Mohsin Hasan ; Peng, Zhangzhi ; Quinn, Zachary ; Liu, Chenghao ; Mittal, Sarthak ; Dziri, Nouha ; Bronstein, Michael ; Bengio, Yoshua ; Chatterjee, Pranam ; Tong, Alexander ; Bose, Avishek Joey</creator><creatorcontrib>Rector-Brooks, Jarrid ; Mohsin Hasan ; Peng, Zhangzhi ; Quinn, Zachary ; Liu, Chenghao ; Mittal, Sarthak ; Dziri, Nouha ; Bronstein, Michael ; Bengio, Yoshua ; Chatterjee, Pranam ; Tong, Alexander ; Bose, Avishek Joey</creatorcontrib><description>Generative modeling of discrete data underlies important applications spanning text-based agents like ChatGPT to the design of the very building blocks of life in protein sequences. However, application domains need to exert control over the generated data by steering the generative process - typically via RLHF - to satisfy a specified property, reward, or affinity metric. In this paper, we study the problem of steering Masked Diffusion Models (MDMs), a recent class of discrete diffusion models that offer a compelling alternative to traditional autoregressive models. We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference by learning to sample from a target Bayesian posterior. Our DDPP framework leads to a family of three novel objectives that are all simulation-free, and thus scalable while applying to general non-differentiable reward functions. Empirically, we instantiate DDPP by steering MDMs to perform class-conditional pixel-level image modeling, RLHF-based alignment of MDMs using text-based rewards, and finetuning protein language models to generate more diverse secondary structures and shorter proteins. We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autoregressive models ; Diffusion barriers ; Modelling ; Noise reduction ; Probabilistic inference ; Proteins ; Steering</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Rector-Brooks, Jarrid</creatorcontrib><creatorcontrib>Mohsin Hasan</creatorcontrib><creatorcontrib>Peng, Zhangzhi</creatorcontrib><creatorcontrib>Quinn, Zachary</creatorcontrib><creatorcontrib>Liu, Chenghao</creatorcontrib><creatorcontrib>Mittal, Sarthak</creatorcontrib><creatorcontrib>Dziri, Nouha</creatorcontrib><creatorcontrib>Bronstein, Michael</creatorcontrib><creatorcontrib>Bengio, Yoshua</creatorcontrib><creatorcontrib>Chatterjee, Pranam</creatorcontrib><creatorcontrib>Tong, Alexander</creatorcontrib><creatorcontrib>Bose, Avishek Joey</creatorcontrib><title>Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction</title><title>arXiv.org</title><description>Generative modeling of discrete data underlies important applications spanning text-based agents like ChatGPT to the design of the very building blocks of life in protein sequences. However, application domains need to exert control over the generated data by steering the generative process - typically via RLHF - to satisfy a specified property, reward, or affinity metric. In this paper, we study the problem of steering Masked Diffusion Models (MDMs), a recent class of discrete diffusion models that offer a compelling alternative to traditional autoregressive models. We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference by learning to sample from a target Bayesian posterior. Our DDPP framework leads to a family of three novel objectives that are all simulation-free, and thus scalable while applying to general non-differentiable reward functions. Empirically, we instantiate DDPP by steering MDMs to perform class-conditional pixel-level image modeling, RLHF-based alignment of MDMs using text-based rewards, and finetuning protein language models to generate more diverse secondary structures and shorter proteins. We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.</description><subject>Autoregressive models</subject><subject>Diffusion barriers</subject><subject>Modelling</subject><subject>Noise reduction</subject><subject>Probabilistic inference</subject><subject>Proteins</subject><subject>Steering</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAURIMgWLT_EHBdaBJjde0DN4WCui6hvZXUkqu5qd9vBBcuXc3AmTMTlkilRLZZSTljKVGf57lcF1JrlbDrOQB46268NHSHlu8tNR4CxNJ1I1l0vMQWBuIva34oOLT08SqkEB_Q88pDa5sQlQWbdmYgSL85Z8vj4bI7ZQ-PzxEo1D2O3kVUKyG03upCCfXf6g3TxUEJ</recordid><startdate>20241010</startdate><enddate>20241010</enddate><creator>Rector-Brooks, Jarrid</creator><creator>Mohsin Hasan</creator><creator>Peng, Zhangzhi</creator><creator>Quinn, Zachary</creator><creator>Liu, Chenghao</creator><creator>Mittal, Sarthak</creator><creator>Dziri, Nouha</creator><creator>Bronstein, Michael</creator><creator>Bengio, Yoshua</creator><creator>Chatterjee, Pranam</creator><creator>Tong, Alexander</creator><creator>Bose, Avishek Joey</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241010</creationdate><title>Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction</title><author>Rector-Brooks, Jarrid ; Mohsin Hasan ; Peng, Zhangzhi ; Quinn, Zachary ; Liu, Chenghao ; Mittal, Sarthak ; Dziri, Nouha ; Bronstein, Michael ; Bengio, Yoshua ; Chatterjee, Pranam ; Tong, Alexander ; Bose, Avishek Joey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31155957313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autoregressive models</topic><topic>Diffusion barriers</topic><topic>Modelling</topic><topic>Noise reduction</topic><topic>Probabilistic inference</topic><topic>Proteins</topic><topic>Steering</topic><toplevel>online_resources</toplevel><creatorcontrib>Rector-Brooks, Jarrid</creatorcontrib><creatorcontrib>Mohsin Hasan</creatorcontrib><creatorcontrib>Peng, Zhangzhi</creatorcontrib><creatorcontrib>Quinn, Zachary</creatorcontrib><creatorcontrib>Liu, Chenghao</creatorcontrib><creatorcontrib>Mittal, Sarthak</creatorcontrib><creatorcontrib>Dziri, Nouha</creatorcontrib><creatorcontrib>Bronstein, Michael</creatorcontrib><creatorcontrib>Bengio, Yoshua</creatorcontrib><creatorcontrib>Chatterjee, Pranam</creatorcontrib><creatorcontrib>Tong, Alexander</creatorcontrib><creatorcontrib>Bose, Avishek Joey</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rector-Brooks, Jarrid</au><au>Mohsin Hasan</au><au>Peng, Zhangzhi</au><au>Quinn, Zachary</au><au>Liu, Chenghao</au><au>Mittal, Sarthak</au><au>Dziri, Nouha</au><au>Bronstein, Michael</au><au>Bengio, Yoshua</au><au>Chatterjee, Pranam</au><au>Tong, Alexander</au><au>Bose, Avishek Joey</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction</atitle><jtitle>arXiv.org</jtitle><date>2024-10-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Generative modeling of discrete data underlies important applications spanning text-based agents like ChatGPT to the design of the very building blocks of life in protein sequences. However, application domains need to exert control over the generated data by steering the generative process - typically via RLHF - to satisfy a specified property, reward, or affinity metric. In this paper, we study the problem of steering Masked Diffusion Models (MDMs), a recent class of discrete diffusion models that offer a compelling alternative to traditional autoregressive models. We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference by learning to sample from a target Bayesian posterior. Our DDPP framework leads to a family of three novel objectives that are all simulation-free, and thus scalable while applying to general non-differentiable reward functions. Empirically, we instantiate DDPP by steering MDMs to perform class-conditional pixel-level image modeling, RLHF-based alignment of MDMs using text-based rewards, and finetuning protein language models to generate more diverse secondary structures and shorter proteins. We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3115595731 |
source | Free E- Journals |
subjects | Autoregressive models Diffusion barriers Modelling Noise reduction Probabilistic inference Proteins Steering |
title | Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T19%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Steering%20Masked%20Discrete%20Diffusion%20Models%20via%20Discrete%20Denoising%20Posterior%20Prediction&rft.jtitle=arXiv.org&rft.au=Rector-Brooks,%20Jarrid&rft.date=2024-10-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3115595731%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115595731&rft_id=info:pmid/&rfr_iscdi=true |