High Freedom Parameterized FM (HFPFM) Code: Model, Correlation Function, and Advantages
The design of radar waveform represents a key factor to rule radar performance and has received considerable attention for several decades. The ideal phase-coded waveforms have the advantages of a parameterized coding structure. However, they suffer from the high spectral sidelobes due to the instan...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2024-10, Vol.60 (5), p.6284-6298 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6298 |
---|---|
container_issue | 5 |
container_start_page | 6284 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 60 |
creator | Jin, Guodong Zhang, Xifeng Huang, Jingkai Zhu, Daiyin |
description | The design of radar waveform represents a key factor to rule radar performance and has received considerable attention for several decades. The ideal phase-coded waveforms have the advantages of a parameterized coding structure. However, they suffer from the high spectral sidelobes due to the instantaneous phase change, and this issue has precluded their widespread use in high-power systems. To this end, recently developed polyphase-coded FM (PCFM) waveforms can promise a continuous phase function, whereas the spectral range is controlled by the frequency template error metric, which will increase the design complexity. Compared to the ideal phase code and PCFM waveforms, nonlinear-frequency-modulated waveforms can precisely define aggregate spectral content by easily setting the range of instantaneous frequency function and have shown great potential in the real synthetic aperture radars. However, they do not have a parameterized coding structure, which impedes their further development. To this end, this article introduces a high-freedom-parameterized-FM-coded waveform with a constant envelope, which has many advantages compared with the previous waveforms, e.g., parameterized coding structure, high design freedom, precise control for spectral range, lower range straddling loss, and sidelobe levels. Moreover, detailed comparative simulation and real system experiment results verify the practicability and advantages of the proposed FM coding scheme. |
doi_str_mv | 10.1109/TAES.2024.3405449 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3115575089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10539263</ieee_id><sourcerecordid>3115575089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-ff2d5c42ba205ead1154157d04af32afca8a08f0275137765954407ac6f064b43</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwYtCU2e_8uGtlMYKLRaseFy22dma0ia6mwr6601oD15m5oX3nWEeQq4ZDBmD7GE5mrwOOXA5FBKUlNkJ6TGlkiiLQZySHgBLo4wrdk4uQti0UqZS9Mj7tFx_0Nwj2npHF8abHTboy1-0NJ_Tu2m-yOf3dFxbfKTztm4HrfAet6Yp64rm-6rohgE1laUj-22qxqwxXJIzZ7YBr469T97yyXI8jWYvT8_j0SwqOJdN5By3qpB8ZTgoNJYxJZlKLEjjBDeuMKmB1AFPFBNJEqus_Q0SU8QOYrmSok9uD3s_ff21x9DoTb33VXtSC9YBUJBmrYsdXIWvQ_Do9Kcvd8b_aAa646c7frrjp4_82szNIVMi4j-_EhmPhfgDPu1pVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115575089</pqid></control><display><type>article</type><title>High Freedom Parameterized FM (HFPFM) Code: Model, Correlation Function, and Advantages</title><source>IEEE Electronic Library (IEL)</source><creator>Jin, Guodong ; Zhang, Xifeng ; Huang, Jingkai ; Zhu, Daiyin</creator><creatorcontrib>Jin, Guodong ; Zhang, Xifeng ; Huang, Jingkai ; Zhu, Daiyin</creatorcontrib><description>The design of radar waveform represents a key factor to rule radar performance and has received considerable attention for several decades. The ideal phase-coded waveforms have the advantages of a parameterized coding structure. However, they suffer from the high spectral sidelobes due to the instantaneous phase change, and this issue has precluded their widespread use in high-power systems. To this end, recently developed polyphase-coded FM (PCFM) waveforms can promise a continuous phase function, whereas the spectral range is controlled by the frequency template error metric, which will increase the design complexity. Compared to the ideal phase code and PCFM waveforms, nonlinear-frequency-modulated waveforms can precisely define aggregate spectral content by easily setting the range of instantaneous frequency function and have shown great potential in the real synthetic aperture radars. However, they do not have a parameterized coding structure, which impedes their further development. To this end, this article introduces a high-freedom-parameterized-FM-coded waveform with a constant envelope, which has many advantages compared with the previous waveforms, e.g., parameterized coding structure, high design freedom, precise control for spectral range, lower range straddling loss, and sidelobe levels. Moreover, detailed comparative simulation and real system experiment results verify the practicability and advantages of the proposed FM coding scheme.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2024.3405449</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Codes ; Coding ; Correlation ; Design factors ; Encoding ; Frequency modulation ; Frequency-modulated (FM) code ; nonlinear frequency modulation (NLFM) ; Parameterization ; Radar ; Sidelobes ; Spaceborne radar ; Synthetic aperture radar ; Time-frequency analysis ; Vectors ; waveform design ; Waveforms</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2024-10, Vol.60 (5), p.6284-6298</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c224t-ff2d5c42ba205ead1154157d04af32afca8a08f0275137765954407ac6f064b43</citedby><cites>FETCH-LOGICAL-c224t-ff2d5c42ba205ead1154157d04af32afca8a08f0275137765954407ac6f064b43</cites><orcidid>0000-0003-2423-412X ; 0000-0003-3580-1230 ; 0009-0007-6307-7717 ; 0000-0002-5855-8635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10539263$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10539263$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin, Guodong</creatorcontrib><creatorcontrib>Zhang, Xifeng</creatorcontrib><creatorcontrib>Huang, Jingkai</creatorcontrib><creatorcontrib>Zhu, Daiyin</creatorcontrib><title>High Freedom Parameterized FM (HFPFM) Code: Model, Correlation Function, and Advantages</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>The design of radar waveform represents a key factor to rule radar performance and has received considerable attention for several decades. The ideal phase-coded waveforms have the advantages of a parameterized coding structure. However, they suffer from the high spectral sidelobes due to the instantaneous phase change, and this issue has precluded their widespread use in high-power systems. To this end, recently developed polyphase-coded FM (PCFM) waveforms can promise a continuous phase function, whereas the spectral range is controlled by the frequency template error metric, which will increase the design complexity. Compared to the ideal phase code and PCFM waveforms, nonlinear-frequency-modulated waveforms can precisely define aggregate spectral content by easily setting the range of instantaneous frequency function and have shown great potential in the real synthetic aperture radars. However, they do not have a parameterized coding structure, which impedes their further development. To this end, this article introduces a high-freedom-parameterized-FM-coded waveform with a constant envelope, which has many advantages compared with the previous waveforms, e.g., parameterized coding structure, high design freedom, precise control for spectral range, lower range straddling loss, and sidelobe levels. Moreover, detailed comparative simulation and real system experiment results verify the practicability and advantages of the proposed FM coding scheme.</description><subject>Codes</subject><subject>Coding</subject><subject>Correlation</subject><subject>Design factors</subject><subject>Encoding</subject><subject>Frequency modulation</subject><subject>Frequency-modulated (FM) code</subject><subject>nonlinear frequency modulation (NLFM)</subject><subject>Parameterization</subject><subject>Radar</subject><subject>Sidelobes</subject><subject>Spaceborne radar</subject><subject>Synthetic aperture radar</subject><subject>Time-frequency analysis</subject><subject>Vectors</subject><subject>waveform design</subject><subject>Waveforms</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwYtCU2e_8uGtlMYKLRaseFy22dma0ia6mwr6601oD15m5oX3nWEeQq4ZDBmD7GE5mrwOOXA5FBKUlNkJ6TGlkiiLQZySHgBLo4wrdk4uQti0UqZS9Mj7tFx_0Nwj2npHF8abHTboy1-0NJ_Tu2m-yOf3dFxbfKTztm4HrfAet6Yp64rm-6rohgE1laUj-22qxqwxXJIzZ7YBr469T97yyXI8jWYvT8_j0SwqOJdN5By3qpB8ZTgoNJYxJZlKLEjjBDeuMKmB1AFPFBNJEqus_Q0SU8QOYrmSok9uD3s_ff21x9DoTb33VXtSC9YBUJBmrYsdXIWvQ_Do9Kcvd8b_aAa646c7frrjp4_82szNIVMi4j-_EhmPhfgDPu1pVw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Jin, Guodong</creator><creator>Zhang, Xifeng</creator><creator>Huang, Jingkai</creator><creator>Zhu, Daiyin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2423-412X</orcidid><orcidid>https://orcid.org/0000-0003-3580-1230</orcidid><orcidid>https://orcid.org/0009-0007-6307-7717</orcidid><orcidid>https://orcid.org/0000-0002-5855-8635</orcidid></search><sort><creationdate>20241001</creationdate><title>High Freedom Parameterized FM (HFPFM) Code: Model, Correlation Function, and Advantages</title><author>Jin, Guodong ; Zhang, Xifeng ; Huang, Jingkai ; Zhu, Daiyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-ff2d5c42ba205ead1154157d04af32afca8a08f0275137765954407ac6f064b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Codes</topic><topic>Coding</topic><topic>Correlation</topic><topic>Design factors</topic><topic>Encoding</topic><topic>Frequency modulation</topic><topic>Frequency-modulated (FM) code</topic><topic>nonlinear frequency modulation (NLFM)</topic><topic>Parameterization</topic><topic>Radar</topic><topic>Sidelobes</topic><topic>Spaceborne radar</topic><topic>Synthetic aperture radar</topic><topic>Time-frequency analysis</topic><topic>Vectors</topic><topic>waveform design</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Guodong</creatorcontrib><creatorcontrib>Zhang, Xifeng</creatorcontrib><creatorcontrib>Huang, Jingkai</creatorcontrib><creatorcontrib>Zhu, Daiyin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Guodong</au><au>Zhang, Xifeng</au><au>Huang, Jingkai</au><au>Zhu, Daiyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Freedom Parameterized FM (HFPFM) Code: Model, Correlation Function, and Advantages</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>60</volume><issue>5</issue><spage>6284</spage><epage>6298</epage><pages>6284-6298</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>The design of radar waveform represents a key factor to rule radar performance and has received considerable attention for several decades. The ideal phase-coded waveforms have the advantages of a parameterized coding structure. However, they suffer from the high spectral sidelobes due to the instantaneous phase change, and this issue has precluded their widespread use in high-power systems. To this end, recently developed polyphase-coded FM (PCFM) waveforms can promise a continuous phase function, whereas the spectral range is controlled by the frequency template error metric, which will increase the design complexity. Compared to the ideal phase code and PCFM waveforms, nonlinear-frequency-modulated waveforms can precisely define aggregate spectral content by easily setting the range of instantaneous frequency function and have shown great potential in the real synthetic aperture radars. However, they do not have a parameterized coding structure, which impedes their further development. To this end, this article introduces a high-freedom-parameterized-FM-coded waveform with a constant envelope, which has many advantages compared with the previous waveforms, e.g., parameterized coding structure, high design freedom, precise control for spectral range, lower range straddling loss, and sidelobe levels. Moreover, detailed comparative simulation and real system experiment results verify the practicability and advantages of the proposed FM coding scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2024.3405449</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2423-412X</orcidid><orcidid>https://orcid.org/0000-0003-3580-1230</orcidid><orcidid>https://orcid.org/0009-0007-6307-7717</orcidid><orcidid>https://orcid.org/0000-0002-5855-8635</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2024-10, Vol.60 (5), p.6284-6298 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_proquest_journals_3115575089 |
source | IEEE Electronic Library (IEL) |
subjects | Codes Coding Correlation Design factors Encoding Frequency modulation Frequency-modulated (FM) code nonlinear frequency modulation (NLFM) Parameterization Radar Sidelobes Spaceborne radar Synthetic aperture radar Time-frequency analysis Vectors waveform design Waveforms |
title | High Freedom Parameterized FM (HFPFM) Code: Model, Correlation Function, and Advantages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Freedom%20Parameterized%20FM%20(HFPFM)%20Code:%20Model,%20Correlation%20Function,%20and%20Advantages&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Jin,%20Guodong&rft.date=2024-10-01&rft.volume=60&rft.issue=5&rft.spage=6284&rft.epage=6298&rft.pages=6284-6298&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2024.3405449&rft_dat=%3Cproquest_RIE%3E3115575089%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115575089&rft_id=info:pmid/&rft_ieee_id=10539263&rfr_iscdi=true |