AdaBoost-Based Efficient Channel Estimation and Data Detection in One-Bit Massive MIMO
The use of one-bit analog-to-digital converter (ADC) has been considered as a viable alternative to high resolution counterparts in realizing and commercializing massive multiple-input multiple-output (MIMO) systems. However, the issue of discarding the amplitude information by one-bit quantizers ha...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2024-10, Vol.23 (10), p.13935-13945 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13945 |
---|---|
container_issue | 10 |
container_start_page | 13935 |
container_title | IEEE transactions on wireless communications |
container_volume | 23 |
creator | Esfandiari, Majdoddin Vorobyov, Sergiy A. Heath, Robert W. |
description | The use of one-bit analog-to-digital converter (ADC) has been considered as a viable alternative to high resolution counterparts in realizing and commercializing massive multiple-input multiple-output (MIMO) systems. However, the issue of discarding the amplitude information by one-bit quantizers has to be compensated. Thus, carefully tailored methods need to be developed for one-bit channel estimation and data detection as the conventional ones cannot be used. To address these issues, the problems of one-bit channel estimation and data detection for MIMO orthogonal frequency division multiplexing (OFDM) system that operates over uncorrelated frequency selective channels are investigated here. We first develop channel estimators that exploit Gaussian discriminant analysis (GDA) classifier and approximate versions of it as the so-called weak classifiers in an adaptive boosting (AdaBoost) approach. Particularly, the combination of the approximate GDA classifiers with AdaBoost offers the benefit of scalability with the linear order of computations, which is critical in massive MIMO-OFDM systems. We then take advantage of the same idea for proposing the data detectors. Numerical results validate the efficiency of the proposed channel estimators and data detectors compared to other methods. They show comparable/better performance to that of the state-of-the-art methods, but require dramatically lower computational complexities and run times. |
doi_str_mv | 10.1109/TWC.2024.3406782 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3115573533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10543005</ieee_id><sourcerecordid>3115573533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-74ac4f38f0664804dba0ebaa5951ddb21ed99714ac769dc3289ca3677c05c84a3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYjePXho4nmx3909wopKAuGCemxKOxtLsIvbYuK_dxEOnmYyeWYm74PQLSUjSkn1sHqvR4wwMeKCKF2yMzSgUpYFY6I8P_RcFZRpdYmuUtoQQrWScoDext5O2jblYmITeDxtmuACxIzrDxsjbPE05fBpc2gjttHjR5stfoQM7m8UIl5GKCYh44VNKXwDXswWy2t00dhtgptTHaLXp-mqfinmy-dZPZ4XjlGdCy2sEw0vG6KUKInwa0tgba2sJPV-zSj4qtK0p7SqvOOsrJzlSmtHpCuF5UN0f7y769qvPaRsNu2-i_1Lw2mfX3PJeU-RI-W6NqUOGrPr-kzdj6HEHOyZ3p452DMne_3K3XElAMA_XApOiOS_JYtpuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115573533</pqid></control><display><type>article</type><title>AdaBoost-Based Efficient Channel Estimation and Data Detection in One-Bit Massive MIMO</title><source>IEEE Electronic Library (IEL)</source><creator>Esfandiari, Majdoddin ; Vorobyov, Sergiy A. ; Heath, Robert W.</creator><creatorcontrib>Esfandiari, Majdoddin ; Vorobyov, Sergiy A. ; Heath, Robert W.</creatorcontrib><description>The use of one-bit analog-to-digital converter (ADC) has been considered as a viable alternative to high resolution counterparts in realizing and commercializing massive multiple-input multiple-output (MIMO) systems. However, the issue of discarding the amplitude information by one-bit quantizers has to be compensated. Thus, carefully tailored methods need to be developed for one-bit channel estimation and data detection as the conventional ones cannot be used. To address these issues, the problems of one-bit channel estimation and data detection for MIMO orthogonal frequency division multiplexing (OFDM) system that operates over uncorrelated frequency selective channels are investigated here. We first develop channel estimators that exploit Gaussian discriminant analysis (GDA) classifier and approximate versions of it as the so-called weak classifiers in an adaptive boosting (AdaBoost) approach. Particularly, the combination of the approximate GDA classifiers with AdaBoost offers the benefit of scalability with the linear order of computations, which is critical in massive MIMO-OFDM systems. We then take advantage of the same idea for proposing the data detectors. Numerical results validate the efficiency of the proposed channel estimators and data detectors compared to other methods. They show comparable/better performance to that of the state-of-the-art methods, but require dramatically lower computational complexities and run times.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2024.3406782</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AdaBoost ; Analog to digital converters ; Channel estimation ; Computational complexity ; Counters ; data detection ; Detectors ; Discriminant analysis ; Estimators ; frequency selective channel ; Machine learning ; Massive MIMO ; massive MIMO-OFDM ; MIMO communication ; OFDM ; One-bit ADC ; Orthogonal Frequency Division Multiplexing ; Training ; Vectors</subject><ispartof>IEEE transactions on wireless communications, 2024-10, Vol.23 (10), p.13935-13945</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-74ac4f38f0664804dba0ebaa5951ddb21ed99714ac769dc3289ca3677c05c84a3</cites><orcidid>0000-0002-2164-6260 ; 0000-0001-7249-647X ; 0000-0002-4666-5628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10543005$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids></links><search><creatorcontrib>Esfandiari, Majdoddin</creatorcontrib><creatorcontrib>Vorobyov, Sergiy A.</creatorcontrib><creatorcontrib>Heath, Robert W.</creatorcontrib><title>AdaBoost-Based Efficient Channel Estimation and Data Detection in One-Bit Massive MIMO</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>The use of one-bit analog-to-digital converter (ADC) has been considered as a viable alternative to high resolution counterparts in realizing and commercializing massive multiple-input multiple-output (MIMO) systems. However, the issue of discarding the amplitude information by one-bit quantizers has to be compensated. Thus, carefully tailored methods need to be developed for one-bit channel estimation and data detection as the conventional ones cannot be used. To address these issues, the problems of one-bit channel estimation and data detection for MIMO orthogonal frequency division multiplexing (OFDM) system that operates over uncorrelated frequency selective channels are investigated here. We first develop channel estimators that exploit Gaussian discriminant analysis (GDA) classifier and approximate versions of it as the so-called weak classifiers in an adaptive boosting (AdaBoost) approach. Particularly, the combination of the approximate GDA classifiers with AdaBoost offers the benefit of scalability with the linear order of computations, which is critical in massive MIMO-OFDM systems. We then take advantage of the same idea for proposing the data detectors. Numerical results validate the efficiency of the proposed channel estimators and data detectors compared to other methods. They show comparable/better performance to that of the state-of-the-art methods, but require dramatically lower computational complexities and run times.</description><subject>AdaBoost</subject><subject>Analog to digital converters</subject><subject>Channel estimation</subject><subject>Computational complexity</subject><subject>Counters</subject><subject>data detection</subject><subject>Detectors</subject><subject>Discriminant analysis</subject><subject>Estimators</subject><subject>frequency selective channel</subject><subject>Machine learning</subject><subject>Massive MIMO</subject><subject>massive MIMO-OFDM</subject><subject>MIMO communication</subject><subject>OFDM</subject><subject>One-bit ADC</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Training</subject><subject>Vectors</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYjePXho4nmx3909wopKAuGCemxKOxtLsIvbYuK_dxEOnmYyeWYm74PQLSUjSkn1sHqvR4wwMeKCKF2yMzSgUpYFY6I8P_RcFZRpdYmuUtoQQrWScoDext5O2jblYmITeDxtmuACxIzrDxsjbPE05fBpc2gjttHjR5stfoQM7m8UIl5GKCYh44VNKXwDXswWy2t00dhtgptTHaLXp-mqfinmy-dZPZ4XjlGdCy2sEw0vG6KUKInwa0tgba2sJPV-zSj4qtK0p7SqvOOsrJzlSmtHpCuF5UN0f7y769qvPaRsNu2-i_1Lw2mfX3PJeU-RI-W6NqUOGrPr-kzdj6HEHOyZ3p452DMne_3K3XElAMA_XApOiOS_JYtpuQ</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Esfandiari, Majdoddin</creator><creator>Vorobyov, Sergiy A.</creator><creator>Heath, Robert W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2164-6260</orcidid><orcidid>https://orcid.org/0000-0001-7249-647X</orcidid><orcidid>https://orcid.org/0000-0002-4666-5628</orcidid></search><sort><creationdate>202410</creationdate><title>AdaBoost-Based Efficient Channel Estimation and Data Detection in One-Bit Massive MIMO</title><author>Esfandiari, Majdoddin ; Vorobyov, Sergiy A. ; Heath, Robert W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-74ac4f38f0664804dba0ebaa5951ddb21ed99714ac769dc3289ca3677c05c84a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AdaBoost</topic><topic>Analog to digital converters</topic><topic>Channel estimation</topic><topic>Computational complexity</topic><topic>Counters</topic><topic>data detection</topic><topic>Detectors</topic><topic>Discriminant analysis</topic><topic>Estimators</topic><topic>frequency selective channel</topic><topic>Machine learning</topic><topic>Massive MIMO</topic><topic>massive MIMO-OFDM</topic><topic>MIMO communication</topic><topic>OFDM</topic><topic>One-bit ADC</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esfandiari, Majdoddin</creatorcontrib><creatorcontrib>Vorobyov, Sergiy A.</creatorcontrib><creatorcontrib>Heath, Robert W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esfandiari, Majdoddin</au><au>Vorobyov, Sergiy A.</au><au>Heath, Robert W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AdaBoost-Based Efficient Channel Estimation and Data Detection in One-Bit Massive MIMO</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-10</date><risdate>2024</risdate><volume>23</volume><issue>10</issue><spage>13935</spage><epage>13945</epage><pages>13935-13945</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>The use of one-bit analog-to-digital converter (ADC) has been considered as a viable alternative to high resolution counterparts in realizing and commercializing massive multiple-input multiple-output (MIMO) systems. However, the issue of discarding the amplitude information by one-bit quantizers has to be compensated. Thus, carefully tailored methods need to be developed for one-bit channel estimation and data detection as the conventional ones cannot be used. To address these issues, the problems of one-bit channel estimation and data detection for MIMO orthogonal frequency division multiplexing (OFDM) system that operates over uncorrelated frequency selective channels are investigated here. We first develop channel estimators that exploit Gaussian discriminant analysis (GDA) classifier and approximate versions of it as the so-called weak classifiers in an adaptive boosting (AdaBoost) approach. Particularly, the combination of the approximate GDA classifiers with AdaBoost offers the benefit of scalability with the linear order of computations, which is critical in massive MIMO-OFDM systems. We then take advantage of the same idea for proposing the data detectors. Numerical results validate the efficiency of the proposed channel estimators and data detectors compared to other methods. They show comparable/better performance to that of the state-of-the-art methods, but require dramatically lower computational complexities and run times.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2024.3406782</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2164-6260</orcidid><orcidid>https://orcid.org/0000-0001-7249-647X</orcidid><orcidid>https://orcid.org/0000-0002-4666-5628</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2024-10, Vol.23 (10), p.13935-13945 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_journals_3115573533 |
source | IEEE Electronic Library (IEL) |
subjects | AdaBoost Analog to digital converters Channel estimation Computational complexity Counters data detection Detectors Discriminant analysis Estimators frequency selective channel Machine learning Massive MIMO massive MIMO-OFDM MIMO communication OFDM One-bit ADC Orthogonal Frequency Division Multiplexing Training Vectors |
title | AdaBoost-Based Efficient Channel Estimation and Data Detection in One-Bit Massive MIMO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AdaBoost-Based%20Efficient%20Channel%20Estimation%20and%20Data%20Detection%20in%20One-Bit%20Massive%20MIMO&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Esfandiari,%20Majdoddin&rft.date=2024-10&rft.volume=23&rft.issue=10&rft.spage=13935&rft.epage=13945&rft.pages=13935-13945&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2024.3406782&rft_dat=%3Cproquest_ieee_%3E3115573533%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115573533&rft_id=info:pmid/&rft_ieee_id=10543005&rfr_iscdi=true |