AdaBoost-Based Efficient Channel Estimation and Data Detection in One-Bit Massive MIMO

The use of one-bit analog-to-digital converter (ADC) has been considered as a viable alternative to high resolution counterparts in realizing and commercializing massive multiple-input multiple-output (MIMO) systems. However, the issue of discarding the amplitude information by one-bit quantizers ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2024-10, Vol.23 (10), p.13935-13945
Hauptverfasser: Esfandiari, Majdoddin, Vorobyov, Sergiy A., Heath, Robert W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13945
container_issue 10
container_start_page 13935
container_title IEEE transactions on wireless communications
container_volume 23
creator Esfandiari, Majdoddin
Vorobyov, Sergiy A.
Heath, Robert W.
description The use of one-bit analog-to-digital converter (ADC) has been considered as a viable alternative to high resolution counterparts in realizing and commercializing massive multiple-input multiple-output (MIMO) systems. However, the issue of discarding the amplitude information by one-bit quantizers has to be compensated. Thus, carefully tailored methods need to be developed for one-bit channel estimation and data detection as the conventional ones cannot be used. To address these issues, the problems of one-bit channel estimation and data detection for MIMO orthogonal frequency division multiplexing (OFDM) system that operates over uncorrelated frequency selective channels are investigated here. We first develop channel estimators that exploit Gaussian discriminant analysis (GDA) classifier and approximate versions of it as the so-called weak classifiers in an adaptive boosting (AdaBoost) approach. Particularly, the combination of the approximate GDA classifiers with AdaBoost offers the benefit of scalability with the linear order of computations, which is critical in massive MIMO-OFDM systems. We then take advantage of the same idea for proposing the data detectors. Numerical results validate the efficiency of the proposed channel estimators and data detectors compared to other methods. They show comparable/better performance to that of the state-of-the-art methods, but require dramatically lower computational complexities and run times.
doi_str_mv 10.1109/TWC.2024.3406782
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3115573533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10543005</ieee_id><sourcerecordid>3115573533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-74ac4f38f0664804dba0ebaa5951ddb21ed99714ac769dc3289ca3677c05c84a3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYjePXho4nmx3909wopKAuGCemxKOxtLsIvbYuK_dxEOnmYyeWYm74PQLSUjSkn1sHqvR4wwMeKCKF2yMzSgUpYFY6I8P_RcFZRpdYmuUtoQQrWScoDext5O2jblYmITeDxtmuACxIzrDxsjbPE05fBpc2gjttHjR5stfoQM7m8UIl5GKCYh44VNKXwDXswWy2t00dhtgptTHaLXp-mqfinmy-dZPZ4XjlGdCy2sEw0vG6KUKInwa0tgba2sJPV-zSj4qtK0p7SqvOOsrJzlSmtHpCuF5UN0f7y769qvPaRsNu2-i_1Lw2mfX3PJeU-RI-W6NqUOGrPr-kzdj6HEHOyZ3p452DMne_3K3XElAMA_XApOiOS_JYtpuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115573533</pqid></control><display><type>article</type><title>AdaBoost-Based Efficient Channel Estimation and Data Detection in One-Bit Massive MIMO</title><source>IEEE Electronic Library (IEL)</source><creator>Esfandiari, Majdoddin ; Vorobyov, Sergiy A. ; Heath, Robert W.</creator><creatorcontrib>Esfandiari, Majdoddin ; Vorobyov, Sergiy A. ; Heath, Robert W.</creatorcontrib><description>The use of one-bit analog-to-digital converter (ADC) has been considered as a viable alternative to high resolution counterparts in realizing and commercializing massive multiple-input multiple-output (MIMO) systems. However, the issue of discarding the amplitude information by one-bit quantizers has to be compensated. Thus, carefully tailored methods need to be developed for one-bit channel estimation and data detection as the conventional ones cannot be used. To address these issues, the problems of one-bit channel estimation and data detection for MIMO orthogonal frequency division multiplexing (OFDM) system that operates over uncorrelated frequency selective channels are investigated here. We first develop channel estimators that exploit Gaussian discriminant analysis (GDA) classifier and approximate versions of it as the so-called weak classifiers in an adaptive boosting (AdaBoost) approach. Particularly, the combination of the approximate GDA classifiers with AdaBoost offers the benefit of scalability with the linear order of computations, which is critical in massive MIMO-OFDM systems. We then take advantage of the same idea for proposing the data detectors. Numerical results validate the efficiency of the proposed channel estimators and data detectors compared to other methods. They show comparable/better performance to that of the state-of-the-art methods, but require dramatically lower computational complexities and run times.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2024.3406782</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AdaBoost ; Analog to digital converters ; Channel estimation ; Computational complexity ; Counters ; data detection ; Detectors ; Discriminant analysis ; Estimators ; frequency selective channel ; Machine learning ; Massive MIMO ; massive MIMO-OFDM ; MIMO communication ; OFDM ; One-bit ADC ; Orthogonal Frequency Division Multiplexing ; Training ; Vectors</subject><ispartof>IEEE transactions on wireless communications, 2024-10, Vol.23 (10), p.13935-13945</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-74ac4f38f0664804dba0ebaa5951ddb21ed99714ac769dc3289ca3677c05c84a3</cites><orcidid>0000-0002-2164-6260 ; 0000-0001-7249-647X ; 0000-0002-4666-5628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10543005$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids></links><search><creatorcontrib>Esfandiari, Majdoddin</creatorcontrib><creatorcontrib>Vorobyov, Sergiy A.</creatorcontrib><creatorcontrib>Heath, Robert W.</creatorcontrib><title>AdaBoost-Based Efficient Channel Estimation and Data Detection in One-Bit Massive MIMO</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>The use of one-bit analog-to-digital converter (ADC) has been considered as a viable alternative to high resolution counterparts in realizing and commercializing massive multiple-input multiple-output (MIMO) systems. However, the issue of discarding the amplitude information by one-bit quantizers has to be compensated. Thus, carefully tailored methods need to be developed for one-bit channel estimation and data detection as the conventional ones cannot be used. To address these issues, the problems of one-bit channel estimation and data detection for MIMO orthogonal frequency division multiplexing (OFDM) system that operates over uncorrelated frequency selective channels are investigated here. We first develop channel estimators that exploit Gaussian discriminant analysis (GDA) classifier and approximate versions of it as the so-called weak classifiers in an adaptive boosting (AdaBoost) approach. Particularly, the combination of the approximate GDA classifiers with AdaBoost offers the benefit of scalability with the linear order of computations, which is critical in massive MIMO-OFDM systems. We then take advantage of the same idea for proposing the data detectors. Numerical results validate the efficiency of the proposed channel estimators and data detectors compared to other methods. They show comparable/better performance to that of the state-of-the-art methods, but require dramatically lower computational complexities and run times.</description><subject>AdaBoost</subject><subject>Analog to digital converters</subject><subject>Channel estimation</subject><subject>Computational complexity</subject><subject>Counters</subject><subject>data detection</subject><subject>Detectors</subject><subject>Discriminant analysis</subject><subject>Estimators</subject><subject>frequency selective channel</subject><subject>Machine learning</subject><subject>Massive MIMO</subject><subject>massive MIMO-OFDM</subject><subject>MIMO communication</subject><subject>OFDM</subject><subject>One-bit ADC</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Training</subject><subject>Vectors</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYjePXho4nmx3909wopKAuGCemxKOxtLsIvbYuK_dxEOnmYyeWYm74PQLSUjSkn1sHqvR4wwMeKCKF2yMzSgUpYFY6I8P_RcFZRpdYmuUtoQQrWScoDext5O2jblYmITeDxtmuACxIzrDxsjbPE05fBpc2gjttHjR5stfoQM7m8UIl5GKCYh44VNKXwDXswWy2t00dhtgptTHaLXp-mqfinmy-dZPZ4XjlGdCy2sEw0vG6KUKInwa0tgba2sJPV-zSj4qtK0p7SqvOOsrJzlSmtHpCuF5UN0f7y769qvPaRsNu2-i_1Lw2mfX3PJeU-RI-W6NqUOGrPr-kzdj6HEHOyZ3p452DMne_3K3XElAMA_XApOiOS_JYtpuQ</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Esfandiari, Majdoddin</creator><creator>Vorobyov, Sergiy A.</creator><creator>Heath, Robert W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2164-6260</orcidid><orcidid>https://orcid.org/0000-0001-7249-647X</orcidid><orcidid>https://orcid.org/0000-0002-4666-5628</orcidid></search><sort><creationdate>202410</creationdate><title>AdaBoost-Based Efficient Channel Estimation and Data Detection in One-Bit Massive MIMO</title><author>Esfandiari, Majdoddin ; Vorobyov, Sergiy A. ; Heath, Robert W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-74ac4f38f0664804dba0ebaa5951ddb21ed99714ac769dc3289ca3677c05c84a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AdaBoost</topic><topic>Analog to digital converters</topic><topic>Channel estimation</topic><topic>Computational complexity</topic><topic>Counters</topic><topic>data detection</topic><topic>Detectors</topic><topic>Discriminant analysis</topic><topic>Estimators</topic><topic>frequency selective channel</topic><topic>Machine learning</topic><topic>Massive MIMO</topic><topic>massive MIMO-OFDM</topic><topic>MIMO communication</topic><topic>OFDM</topic><topic>One-bit ADC</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esfandiari, Majdoddin</creatorcontrib><creatorcontrib>Vorobyov, Sergiy A.</creatorcontrib><creatorcontrib>Heath, Robert W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esfandiari, Majdoddin</au><au>Vorobyov, Sergiy A.</au><au>Heath, Robert W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AdaBoost-Based Efficient Channel Estimation and Data Detection in One-Bit Massive MIMO</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-10</date><risdate>2024</risdate><volume>23</volume><issue>10</issue><spage>13935</spage><epage>13945</epage><pages>13935-13945</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>The use of one-bit analog-to-digital converter (ADC) has been considered as a viable alternative to high resolution counterparts in realizing and commercializing massive multiple-input multiple-output (MIMO) systems. However, the issue of discarding the amplitude information by one-bit quantizers has to be compensated. Thus, carefully tailored methods need to be developed for one-bit channel estimation and data detection as the conventional ones cannot be used. To address these issues, the problems of one-bit channel estimation and data detection for MIMO orthogonal frequency division multiplexing (OFDM) system that operates over uncorrelated frequency selective channels are investigated here. We first develop channel estimators that exploit Gaussian discriminant analysis (GDA) classifier and approximate versions of it as the so-called weak classifiers in an adaptive boosting (AdaBoost) approach. Particularly, the combination of the approximate GDA classifiers with AdaBoost offers the benefit of scalability with the linear order of computations, which is critical in massive MIMO-OFDM systems. We then take advantage of the same idea for proposing the data detectors. Numerical results validate the efficiency of the proposed channel estimators and data detectors compared to other methods. They show comparable/better performance to that of the state-of-the-art methods, but require dramatically lower computational complexities and run times.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2024.3406782</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2164-6260</orcidid><orcidid>https://orcid.org/0000-0001-7249-647X</orcidid><orcidid>https://orcid.org/0000-0002-4666-5628</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2024-10, Vol.23 (10), p.13935-13945
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_3115573533
source IEEE Electronic Library (IEL)
subjects AdaBoost
Analog to digital converters
Channel estimation
Computational complexity
Counters
data detection
Detectors
Discriminant analysis
Estimators
frequency selective channel
Machine learning
Massive MIMO
massive MIMO-OFDM
MIMO communication
OFDM
One-bit ADC
Orthogonal Frequency Division Multiplexing
Training
Vectors
title AdaBoost-Based Efficient Channel Estimation and Data Detection in One-Bit Massive MIMO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AdaBoost-Based%20Efficient%20Channel%20Estimation%20and%20Data%20Detection%20in%20One-Bit%20Massive%20MIMO&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Esfandiari,%20Majdoddin&rft.date=2024-10&rft.volume=23&rft.issue=10&rft.spage=13935&rft.epage=13945&rft.pages=13935-13945&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2024.3406782&rft_dat=%3Cproquest_ieee_%3E3115573533%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115573533&rft_id=info:pmid/&rft_ieee_id=10543005&rfr_iscdi=true