Secure and reliable communication using memristor-based chaotic circuit
This research paper demonstrates behavior of memristor emulator circuit at various input frequencies. It is a critical circuit having a vast potential for constructing digital and analog circuits, FM-to-AM converters, filters, cellular neural networks, sensors, analog circuits, and chaotic oscillato...
Gespeichert in:
Veröffentlicht in: | Analog integrated circuits and signal processing 2024-09, Vol.120 (2-3), p.155-171 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171 |
---|---|
container_issue | 2-3 |
container_start_page | 155 |
container_title | Analog integrated circuits and signal processing |
container_volume | 120 |
creator | Kumari, Usha Yadav, Rekha |
description | This research paper demonstrates behavior of memristor emulator circuit at various input frequencies. It is a critical circuit having a vast potential for constructing digital and analog circuits, FM-to-AM converters, filters, cellular neural networks, sensors, analog circuits, and chaotic oscillators are all designed with memristor circuits. It has some unique properties such as nonlinear behaviour, analog signal processing, adaptive and reconfigurable system, memory and state retention and also high density and low power consumption. These properties build the communication system more reliable secure and more efficient. To enhance the design of the memristor model, implementation doing using analog multiplier and operational transconductance amplifier with a constant transcoductance gain is employed. In addition to the input supply voltage frequency (f) and amplitude (Vm), the operational transconductance amplifier provides a control parameter known as the transconductance (gm). Modifications in amplitude have an impact on memory resistance, and variations in biassing voltage influence transconductance (gm) of OTA. The research shows memristor-based chaotic circuit use for secure transmission system. The operational frequency that exhibits the maximum value is 10 kilohertz, accompanied by a power dissipation of 24.1 microwatts with noise
51.9
nV
/
Hz
1
/
2
at room temperature. This study employs a circuit electronic design automation (EDA) tool to demonstrate the behavior of a memristor circuit under varying input conditions. |
doi_str_mv | 10.1007/s10470-024-02278-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3115480046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115480046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-9269c9e3f2826d1086f22f9b4ca3c9c530c80d29a6ac4410d79609437bb43c193</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5gsMRuePxLHI6qgIFViAGbLeXGKqyYudjLw70kJEhvD013uPU86hFxzuOUA-i5zUBoYCDWd0BUzJ2TBCy0ZN9qckgUYUTAOEs7JRc47ABBawYKsXz2OyVPXNzT5fXD13lOMXTf2Ad0QYk_HHPot7XyXQh5iYrXLvqH44eIQkGJIOIbhkpy1bp_91W8uyfvjw9vqiW1e1s-r-w1DATAwI0qDxstWVKJsOFRlK0RraoVOosFCAlbQCONKh0pxaLQpwSip61pJ5EYuyc3MPaT4Ofo82F0cUz-9tJLzQlUAqpxaYm5hijkn39pDCp1LX5aDPQqzszA7CbM_wuwRLedRnsr91qc_9D-rb1rhbUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115480046</pqid></control><display><type>article</type><title>Secure and reliable communication using memristor-based chaotic circuit</title><source>Springer Online Journals</source><creator>Kumari, Usha ; Yadav, Rekha</creator><creatorcontrib>Kumari, Usha ; Yadav, Rekha</creatorcontrib><description>This research paper demonstrates behavior of memristor emulator circuit at various input frequencies. It is a critical circuit having a vast potential for constructing digital and analog circuits, FM-to-AM converters, filters, cellular neural networks, sensors, analog circuits, and chaotic oscillators are all designed with memristor circuits. It has some unique properties such as nonlinear behaviour, analog signal processing, adaptive and reconfigurable system, memory and state retention and also high density and low power consumption. These properties build the communication system more reliable secure and more efficient. To enhance the design of the memristor model, implementation doing using analog multiplier and operational transconductance amplifier with a constant transcoductance gain is employed. In addition to the input supply voltage frequency (f) and amplitude (Vm), the operational transconductance amplifier provides a control parameter known as the transconductance (gm). Modifications in amplitude have an impact on memory resistance, and variations in biassing voltage influence transconductance (gm) of OTA. The research shows memristor-based chaotic circuit use for secure transmission system. The operational frequency that exhibits the maximum value is 10 kilohertz, accompanied by a power dissipation of 24.1 microwatts with noise
51.9
nV
/
Hz
1
/
2
at room temperature. This study employs a circuit electronic design automation (EDA) tool to demonstrate the behavior of a memristor circuit under varying input conditions.</description><identifier>ISSN: 0925-1030</identifier><identifier>EISSN: 1573-1979</identifier><identifier>DOI: 10.1007/s10470-024-02278-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive control ; Adaptive systems ; Amplitudes ; Analog circuits ; Chaos theory ; Circuit reliability ; Circuits ; Circuits and Systems ; Communications systems ; Design improvements ; Electric potential ; Electrical Engineering ; Electronic design automation ; Energy dissipation ; Engineering ; Impact resistance ; Memristors ; Neural networks ; Operational amplifiers ; Parameter modification ; Power consumption ; Room temperature ; Signal,Image and Speech Processing ; Transconductance ; Voltage</subject><ispartof>Analog integrated circuits and signal processing, 2024-09, Vol.120 (2-3), p.155-171</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-9269c9e3f2826d1086f22f9b4ca3c9c530c80d29a6ac4410d79609437bb43c193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10470-024-02278-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10470-024-02278-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kumari, Usha</creatorcontrib><creatorcontrib>Yadav, Rekha</creatorcontrib><title>Secure and reliable communication using memristor-based chaotic circuit</title><title>Analog integrated circuits and signal processing</title><addtitle>Analog Integr Circ Sig Process</addtitle><description>This research paper demonstrates behavior of memristor emulator circuit at various input frequencies. It is a critical circuit having a vast potential for constructing digital and analog circuits, FM-to-AM converters, filters, cellular neural networks, sensors, analog circuits, and chaotic oscillators are all designed with memristor circuits. It has some unique properties such as nonlinear behaviour, analog signal processing, adaptive and reconfigurable system, memory and state retention and also high density and low power consumption. These properties build the communication system more reliable secure and more efficient. To enhance the design of the memristor model, implementation doing using analog multiplier and operational transconductance amplifier with a constant transcoductance gain is employed. In addition to the input supply voltage frequency (f) and amplitude (Vm), the operational transconductance amplifier provides a control parameter known as the transconductance (gm). Modifications in amplitude have an impact on memory resistance, and variations in biassing voltage influence transconductance (gm) of OTA. The research shows memristor-based chaotic circuit use for secure transmission system. The operational frequency that exhibits the maximum value is 10 kilohertz, accompanied by a power dissipation of 24.1 microwatts with noise
51.9
nV
/
Hz
1
/
2
at room temperature. This study employs a circuit electronic design automation (EDA) tool to demonstrate the behavior of a memristor circuit under varying input conditions.</description><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Amplitudes</subject><subject>Analog circuits</subject><subject>Chaos theory</subject><subject>Circuit reliability</subject><subject>Circuits</subject><subject>Circuits and Systems</subject><subject>Communications systems</subject><subject>Design improvements</subject><subject>Electric potential</subject><subject>Electrical Engineering</subject><subject>Electronic design automation</subject><subject>Energy dissipation</subject><subject>Engineering</subject><subject>Impact resistance</subject><subject>Memristors</subject><subject>Neural networks</subject><subject>Operational amplifiers</subject><subject>Parameter modification</subject><subject>Power consumption</subject><subject>Room temperature</subject><subject>Signal,Image and Speech Processing</subject><subject>Transconductance</subject><subject>Voltage</subject><issn>0925-1030</issn><issn>1573-1979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5gsMRuePxLHI6qgIFViAGbLeXGKqyYudjLw70kJEhvD013uPU86hFxzuOUA-i5zUBoYCDWd0BUzJ2TBCy0ZN9qckgUYUTAOEs7JRc47ABBawYKsXz2OyVPXNzT5fXD13lOMXTf2Ad0QYk_HHPot7XyXQh5iYrXLvqH44eIQkGJIOIbhkpy1bp_91W8uyfvjw9vqiW1e1s-r-w1DATAwI0qDxstWVKJsOFRlK0RraoVOosFCAlbQCONKh0pxaLQpwSip61pJ5EYuyc3MPaT4Ofo82F0cUz-9tJLzQlUAqpxaYm5hijkn39pDCp1LX5aDPQqzszA7CbM_wuwRLedRnsr91qc_9D-rb1rhbUc</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Kumari, Usha</creator><creator>Yadav, Rekha</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TG</scope><scope>8FD</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>20240901</creationdate><title>Secure and reliable communication using memristor-based chaotic circuit</title><author>Kumari, Usha ; Yadav, Rekha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-9269c9e3f2826d1086f22f9b4ca3c9c530c80d29a6ac4410d79609437bb43c193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Amplitudes</topic><topic>Analog circuits</topic><topic>Chaos theory</topic><topic>Circuit reliability</topic><topic>Circuits</topic><topic>Circuits and Systems</topic><topic>Communications systems</topic><topic>Design improvements</topic><topic>Electric potential</topic><topic>Electrical Engineering</topic><topic>Electronic design automation</topic><topic>Energy dissipation</topic><topic>Engineering</topic><topic>Impact resistance</topic><topic>Memristors</topic><topic>Neural networks</topic><topic>Operational amplifiers</topic><topic>Parameter modification</topic><topic>Power consumption</topic><topic>Room temperature</topic><topic>Signal,Image and Speech Processing</topic><topic>Transconductance</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumari, Usha</creatorcontrib><creatorcontrib>Yadav, Rekha</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Analog integrated circuits and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumari, Usha</au><au>Yadav, Rekha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secure and reliable communication using memristor-based chaotic circuit</atitle><jtitle>Analog integrated circuits and signal processing</jtitle><stitle>Analog Integr Circ Sig Process</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>120</volume><issue>2-3</issue><spage>155</spage><epage>171</epage><pages>155-171</pages><issn>0925-1030</issn><eissn>1573-1979</eissn><abstract>This research paper demonstrates behavior of memristor emulator circuit at various input frequencies. It is a critical circuit having a vast potential for constructing digital and analog circuits, FM-to-AM converters, filters, cellular neural networks, sensors, analog circuits, and chaotic oscillators are all designed with memristor circuits. It has some unique properties such as nonlinear behaviour, analog signal processing, adaptive and reconfigurable system, memory and state retention and also high density and low power consumption. These properties build the communication system more reliable secure and more efficient. To enhance the design of the memristor model, implementation doing using analog multiplier and operational transconductance amplifier with a constant transcoductance gain is employed. In addition to the input supply voltage frequency (f) and amplitude (Vm), the operational transconductance amplifier provides a control parameter known as the transconductance (gm). Modifications in amplitude have an impact on memory resistance, and variations in biassing voltage influence transconductance (gm) of OTA. The research shows memristor-based chaotic circuit use for secure transmission system. The operational frequency that exhibits the maximum value is 10 kilohertz, accompanied by a power dissipation of 24.1 microwatts with noise
51.9
nV
/
Hz
1
/
2
at room temperature. This study employs a circuit electronic design automation (EDA) tool to demonstrate the behavior of a memristor circuit under varying input conditions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10470-024-02278-9</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-1030 |
ispartof | Analog integrated circuits and signal processing, 2024-09, Vol.120 (2-3), p.155-171 |
issn | 0925-1030 1573-1979 |
language | eng |
recordid | cdi_proquest_journals_3115480046 |
source | Springer Online Journals |
subjects | Adaptive control Adaptive systems Amplitudes Analog circuits Chaos theory Circuit reliability Circuits Circuits and Systems Communications systems Design improvements Electric potential Electrical Engineering Electronic design automation Energy dissipation Engineering Impact resistance Memristors Neural networks Operational amplifiers Parameter modification Power consumption Room temperature Signal,Image and Speech Processing Transconductance Voltage |
title | Secure and reliable communication using memristor-based chaotic circuit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secure%20and%20reliable%20communication%20using%20memristor-based%20chaotic%20circuit&rft.jtitle=Analog%20integrated%20circuits%20and%20signal%20processing&rft.au=Kumari,%20Usha&rft.date=2024-09-01&rft.volume=120&rft.issue=2-3&rft.spage=155&rft.epage=171&rft.pages=155-171&rft.issn=0925-1030&rft.eissn=1573-1979&rft_id=info:doi/10.1007/s10470-024-02278-9&rft_dat=%3Cproquest_cross%3E3115480046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115480046&rft_id=info:pmid/&rfr_iscdi=true |