Reliability‐based state parameter liquefaction probability prediction using soft computing techniques

The state parameter (ѱ) accounts for both relative density and effective stress, which influence the cyclic stress or liquefaction characteristic of the soil significantly. This study presents a ѱ‐based probabilistic liquefaction evaluation method using six soft computing (SC) techniques. The liquef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geological journal (Chichester, England) England), 2024-09, Vol.59 (9), p.2638-2654
Hauptverfasser: Kumar, Kishan, Samui, Pijush, Choudhary, S. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2654
container_issue 9
container_start_page 2638
container_title Geological journal (Chichester, England)
container_volume 59
creator Kumar, Kishan
Samui, Pijush
Choudhary, S. S.
description The state parameter (ѱ) accounts for both relative density and effective stress, which influence the cyclic stress or liquefaction characteristic of the soil significantly. This study presents a ѱ‐based probabilistic liquefaction evaluation method using six soft computing (SC) techniques. The liquefaction probability of failure (PL) is calculated using the first‐order second moment (FOSM) method based on the cone penetration test (CPT) database. Then, six SC techniques, such as Gaussian process regression (GPR), relevance vector machine (RVM), functional network (FN), genetic programming (GP), minimax probability machine regression (MPMR) and multivariate adaptive regression splines (MARS), are used to predict PL. The performance of these models is examined using nine statistical indices. Additionally, plots such as regression plots, Taylor diagrams, error matrix and rank analysis are shown to assess the SC model's performance. Finally, sensitivity analysis is performed using the cosine amplitude method (CAM) to assess the influence of input parameters on output. The current study demonstrates that SC models based on state parameter predict PL effectively. RVM and MPMR models closely follow the GPR model in terms of performance, which is superior to the other models. Notably, two equations are generated using GP and MARS models to predict PL. The results of the sensitivity analysis reveal the magnitude of earthquake (Mw) as the most sensitive parameter. The outcomes of this research will offer risk evaluations for geotechnical engineering designs and expand the use of state parameter‐based SC models in liquefaction analysis. Soft computing techniques in geotechnical engineering offer robust predictive capabilities. This study develops soft computing (SC) techniques to assess reliability‐based liquefaction probability of failure (PL) using a state parameter‐based model. GPR leads in predictive performance, closely followed by RVM and MPMR. This research encourages the adoption of state parameter‐based SC models for liquefaction analysis.
doi_str_mv 10.1002/gj.5049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3115315106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115315106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1819-182e8761b25520786651c2afab6224c8169b7dd31905509bf7394f212a9918bc3</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK7iKxQ8eJBdZ9KmbY6y6KoIgug5JGlaU7ptTbLI3nwEn9EnsbV79TT_DN_M_PyEnCMsEYBeV_WSQcIPyAyB8wVCnBySGUBGB83gmJx4XwMgQoIzUr2YxkplGxt2P1_fSnpTRD7IYKJeOrkxwbiosR9bU0odbNdGvevUfmHQprDTeOttW0W-K0Oku02_DWMbjH5vx2V_So5K2Xhztq9z8nZ3-7q6Xzw9rx9WN08LjTkObnNq8ixFRRmjkOVpylBTWUqVUproHFOusqKIkQNjwFWZxTwpKVLJOeZKx3NyMd0dbI5_g6i7rWuHlyJGZDEyhHSgLidKu857Z0rRO7uRbicQxJiiqGoxpjiQVxP5aRuz-w8T68c_-hecGnPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115315106</pqid></control><display><type>article</type><title>Reliability‐based state parameter liquefaction probability prediction using soft computing techniques</title><source>Wiley Journals</source><creator>Kumar, Kishan ; Samui, Pijush ; Choudhary, S. S.</creator><creatorcontrib>Kumar, Kishan ; Samui, Pijush ; Choudhary, S. S.</creatorcontrib><description>The state parameter (ѱ) accounts for both relative density and effective stress, which influence the cyclic stress or liquefaction characteristic of the soil significantly. This study presents a ѱ‐based probabilistic liquefaction evaluation method using six soft computing (SC) techniques. The liquefaction probability of failure (PL) is calculated using the first‐order second moment (FOSM) method based on the cone penetration test (CPT) database. Then, six SC techniques, such as Gaussian process regression (GPR), relevance vector machine (RVM), functional network (FN), genetic programming (GP), minimax probability machine regression (MPMR) and multivariate adaptive regression splines (MARS), are used to predict PL. The performance of these models is examined using nine statistical indices. Additionally, plots such as regression plots, Taylor diagrams, error matrix and rank analysis are shown to assess the SC model's performance. Finally, sensitivity analysis is performed using the cosine amplitude method (CAM) to assess the influence of input parameters on output. The current study demonstrates that SC models based on state parameter predict PL effectively. RVM and MPMR models closely follow the GPR model in terms of performance, which is superior to the other models. Notably, two equations are generated using GP and MARS models to predict PL. The results of the sensitivity analysis reveal the magnitude of earthquake (Mw) as the most sensitive parameter. The outcomes of this research will offer risk evaluations for geotechnical engineering designs and expand the use of state parameter‐based SC models in liquefaction analysis. Soft computing techniques in geotechnical engineering offer robust predictive capabilities. This study develops soft computing (SC) techniques to assess reliability‐based liquefaction probability of failure (PL) using a state parameter‐based model. GPR leads in predictive performance, closely followed by RVM and MPMR. This research encourages the adoption of state parameter‐based SC models for liquefaction analysis.</description><identifier>ISSN: 0072-1050</identifier><identifier>EISSN: 1099-1034</identifier><identifier>DOI: 10.1002/gj.5049</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>cone penetration test ; Cone penetration tests ; Earthquake prediction ; Earthquakes ; Error analysis ; Gaussian process ; Genetic algorithms ; Geotechnical engineering ; Liquefaction ; Machine learning ; Parameter sensitivity ; Performance prediction ; Regression analysis ; Regression models ; Relative density ; Risk assessment ; Seismic activity ; Sensitivity analysis ; Soft computing ; Soil stresses ; Specific gravity ; Splines ; state parameter ; Statistical analysis ; Statistical models</subject><ispartof>Geological journal (Chichester, England), 2024-09, Vol.59 (9), p.2638-2654</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1819-182e8761b25520786651c2afab6224c8169b7dd31905509bf7394f212a9918bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgj.5049$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgj.5049$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kumar, Kishan</creatorcontrib><creatorcontrib>Samui, Pijush</creatorcontrib><creatorcontrib>Choudhary, S. S.</creatorcontrib><title>Reliability‐based state parameter liquefaction probability prediction using soft computing techniques</title><title>Geological journal (Chichester, England)</title><description>The state parameter (ѱ) accounts for both relative density and effective stress, which influence the cyclic stress or liquefaction characteristic of the soil significantly. This study presents a ѱ‐based probabilistic liquefaction evaluation method using six soft computing (SC) techniques. The liquefaction probability of failure (PL) is calculated using the first‐order second moment (FOSM) method based on the cone penetration test (CPT) database. Then, six SC techniques, such as Gaussian process regression (GPR), relevance vector machine (RVM), functional network (FN), genetic programming (GP), minimax probability machine regression (MPMR) and multivariate adaptive regression splines (MARS), are used to predict PL. The performance of these models is examined using nine statistical indices. Additionally, plots such as regression plots, Taylor diagrams, error matrix and rank analysis are shown to assess the SC model's performance. Finally, sensitivity analysis is performed using the cosine amplitude method (CAM) to assess the influence of input parameters on output. The current study demonstrates that SC models based on state parameter predict PL effectively. RVM and MPMR models closely follow the GPR model in terms of performance, which is superior to the other models. Notably, two equations are generated using GP and MARS models to predict PL. The results of the sensitivity analysis reveal the magnitude of earthquake (Mw) as the most sensitive parameter. The outcomes of this research will offer risk evaluations for geotechnical engineering designs and expand the use of state parameter‐based SC models in liquefaction analysis. Soft computing techniques in geotechnical engineering offer robust predictive capabilities. This study develops soft computing (SC) techniques to assess reliability‐based liquefaction probability of failure (PL) using a state parameter‐based model. GPR leads in predictive performance, closely followed by RVM and MPMR. This research encourages the adoption of state parameter‐based SC models for liquefaction analysis.</description><subject>cone penetration test</subject><subject>Cone penetration tests</subject><subject>Earthquake prediction</subject><subject>Earthquakes</subject><subject>Error analysis</subject><subject>Gaussian process</subject><subject>Genetic algorithms</subject><subject>Geotechnical engineering</subject><subject>Liquefaction</subject><subject>Machine learning</subject><subject>Parameter sensitivity</subject><subject>Performance prediction</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Relative density</subject><subject>Risk assessment</subject><subject>Seismic activity</subject><subject>Sensitivity analysis</subject><subject>Soft computing</subject><subject>Soil stresses</subject><subject>Specific gravity</subject><subject>Splines</subject><subject>state parameter</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><issn>0072-1050</issn><issn>1099-1034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAQhoMouK7iKxQ8eJBdZ9KmbY6y6KoIgug5JGlaU7ptTbLI3nwEn9EnsbV79TT_DN_M_PyEnCMsEYBeV_WSQcIPyAyB8wVCnBySGUBGB83gmJx4XwMgQoIzUr2YxkplGxt2P1_fSnpTRD7IYKJeOrkxwbiosR9bU0odbNdGvevUfmHQprDTeOttW0W-K0Oku02_DWMbjH5vx2V_So5K2Xhztq9z8nZ3-7q6Xzw9rx9WN08LjTkObnNq8ixFRRmjkOVpylBTWUqVUproHFOusqKIkQNjwFWZxTwpKVLJOeZKx3NyMd0dbI5_g6i7rWuHlyJGZDEyhHSgLidKu857Z0rRO7uRbicQxJiiqGoxpjiQVxP5aRuz-w8T68c_-hecGnPA</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Kumar, Kishan</creator><creator>Samui, Pijush</creator><creator>Choudhary, S. S.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>202409</creationdate><title>Reliability‐based state parameter liquefaction probability prediction using soft computing techniques</title><author>Kumar, Kishan ; Samui, Pijush ; Choudhary, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1819-182e8761b25520786651c2afab6224c8169b7dd31905509bf7394f212a9918bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cone penetration test</topic><topic>Cone penetration tests</topic><topic>Earthquake prediction</topic><topic>Earthquakes</topic><topic>Error analysis</topic><topic>Gaussian process</topic><topic>Genetic algorithms</topic><topic>Geotechnical engineering</topic><topic>Liquefaction</topic><topic>Machine learning</topic><topic>Parameter sensitivity</topic><topic>Performance prediction</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Relative density</topic><topic>Risk assessment</topic><topic>Seismic activity</topic><topic>Sensitivity analysis</topic><topic>Soft computing</topic><topic>Soil stresses</topic><topic>Specific gravity</topic><topic>Splines</topic><topic>state parameter</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Kishan</creatorcontrib><creatorcontrib>Samui, Pijush</creatorcontrib><creatorcontrib>Choudhary, S. S.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Geological journal (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Kishan</au><au>Samui, Pijush</au><au>Choudhary, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability‐based state parameter liquefaction probability prediction using soft computing techniques</atitle><jtitle>Geological journal (Chichester, England)</jtitle><date>2024-09</date><risdate>2024</risdate><volume>59</volume><issue>9</issue><spage>2638</spage><epage>2654</epage><pages>2638-2654</pages><issn>0072-1050</issn><eissn>1099-1034</eissn><abstract>The state parameter (ѱ) accounts for both relative density and effective stress, which influence the cyclic stress or liquefaction characteristic of the soil significantly. This study presents a ѱ‐based probabilistic liquefaction evaluation method using six soft computing (SC) techniques. The liquefaction probability of failure (PL) is calculated using the first‐order second moment (FOSM) method based on the cone penetration test (CPT) database. Then, six SC techniques, such as Gaussian process regression (GPR), relevance vector machine (RVM), functional network (FN), genetic programming (GP), minimax probability machine regression (MPMR) and multivariate adaptive regression splines (MARS), are used to predict PL. The performance of these models is examined using nine statistical indices. Additionally, plots such as regression plots, Taylor diagrams, error matrix and rank analysis are shown to assess the SC model's performance. Finally, sensitivity analysis is performed using the cosine amplitude method (CAM) to assess the influence of input parameters on output. The current study demonstrates that SC models based on state parameter predict PL effectively. RVM and MPMR models closely follow the GPR model in terms of performance, which is superior to the other models. Notably, two equations are generated using GP and MARS models to predict PL. The results of the sensitivity analysis reveal the magnitude of earthquake (Mw) as the most sensitive parameter. The outcomes of this research will offer risk evaluations for geotechnical engineering designs and expand the use of state parameter‐based SC models in liquefaction analysis. Soft computing techniques in geotechnical engineering offer robust predictive capabilities. This study develops soft computing (SC) techniques to assess reliability‐based liquefaction probability of failure (PL) using a state parameter‐based model. GPR leads in predictive performance, closely followed by RVM and MPMR. This research encourages the adoption of state parameter‐based SC models for liquefaction analysis.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/gj.5049</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0072-1050
ispartof Geological journal (Chichester, England), 2024-09, Vol.59 (9), p.2638-2654
issn 0072-1050
1099-1034
language eng
recordid cdi_proquest_journals_3115315106
source Wiley Journals
subjects cone penetration test
Cone penetration tests
Earthquake prediction
Earthquakes
Error analysis
Gaussian process
Genetic algorithms
Geotechnical engineering
Liquefaction
Machine learning
Parameter sensitivity
Performance prediction
Regression analysis
Regression models
Relative density
Risk assessment
Seismic activity
Sensitivity analysis
Soft computing
Soil stresses
Specific gravity
Splines
state parameter
Statistical analysis
Statistical models
title Reliability‐based state parameter liquefaction probability prediction using soft computing techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%E2%80%90based%20state%20parameter%20liquefaction%20probability%20prediction%20using%20soft%20computing%20techniques&rft.jtitle=Geological%20journal%20(Chichester,%20England)&rft.au=Kumar,%20Kishan&rft.date=2024-09&rft.volume=59&rft.issue=9&rft.spage=2638&rft.epage=2654&rft.pages=2638-2654&rft.issn=0072-1050&rft.eissn=1099-1034&rft_id=info:doi/10.1002/gj.5049&rft_dat=%3Cproquest_cross%3E3115315106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115315106&rft_id=info:pmid/&rfr_iscdi=true