Reliability‐based state parameter liquefaction probability prediction using soft computing techniques
The state parameter (ѱ) accounts for both relative density and effective stress, which influence the cyclic stress or liquefaction characteristic of the soil significantly. This study presents a ѱ‐based probabilistic liquefaction evaluation method using six soft computing (SC) techniques. The liquef...
Gespeichert in:
Veröffentlicht in: | Geological journal (Chichester, England) England), 2024-09, Vol.59 (9), p.2638-2654 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2654 |
---|---|
container_issue | 9 |
container_start_page | 2638 |
container_title | Geological journal (Chichester, England) |
container_volume | 59 |
creator | Kumar, Kishan Samui, Pijush Choudhary, S. S. |
description | The state parameter (ѱ) accounts for both relative density and effective stress, which influence the cyclic stress or liquefaction characteristic of the soil significantly. This study presents a ѱ‐based probabilistic liquefaction evaluation method using six soft computing (SC) techniques. The liquefaction probability of failure (PL) is calculated using the first‐order second moment (FOSM) method based on the cone penetration test (CPT) database. Then, six SC techniques, such as Gaussian process regression (GPR), relevance vector machine (RVM), functional network (FN), genetic programming (GP), minimax probability machine regression (MPMR) and multivariate adaptive regression splines (MARS), are used to predict PL. The performance of these models is examined using nine statistical indices. Additionally, plots such as regression plots, Taylor diagrams, error matrix and rank analysis are shown to assess the SC model's performance. Finally, sensitivity analysis is performed using the cosine amplitude method (CAM) to assess the influence of input parameters on output. The current study demonstrates that SC models based on state parameter predict PL effectively. RVM and MPMR models closely follow the GPR model in terms of performance, which is superior to the other models. Notably, two equations are generated using GP and MARS models to predict PL. The results of the sensitivity analysis reveal the magnitude of earthquake (Mw) as the most sensitive parameter. The outcomes of this research will offer risk evaluations for geotechnical engineering designs and expand the use of state parameter‐based SC models in liquefaction analysis.
Soft computing techniques in geotechnical engineering offer robust predictive capabilities. This study develops soft computing (SC) techniques to assess reliability‐based liquefaction probability of failure (PL) using a state parameter‐based model. GPR leads in predictive performance, closely followed by RVM and MPMR. This research encourages the adoption of state parameter‐based SC models for liquefaction analysis. |
doi_str_mv | 10.1002/gj.5049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3115315106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115315106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1819-182e8761b25520786651c2afab6224c8169b7dd31905509bf7394f212a9918bc3</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK7iKxQ8eJBdZ9KmbY6y6KoIgug5JGlaU7ptTbLI3nwEn9EnsbV79TT_DN_M_PyEnCMsEYBeV_WSQcIPyAyB8wVCnBySGUBGB83gmJx4XwMgQoIzUr2YxkplGxt2P1_fSnpTRD7IYKJeOrkxwbiosR9bU0odbNdGvevUfmHQprDTeOttW0W-K0Oku02_DWMbjH5vx2V_So5K2Xhztq9z8nZ3-7q6Xzw9rx9WN08LjTkObnNq8ixFRRmjkOVpylBTWUqVUproHFOusqKIkQNjwFWZxTwpKVLJOeZKx3NyMd0dbI5_g6i7rWuHlyJGZDEyhHSgLidKu857Z0rRO7uRbicQxJiiqGoxpjiQVxP5aRuz-w8T68c_-hecGnPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115315106</pqid></control><display><type>article</type><title>Reliability‐based state parameter liquefaction probability prediction using soft computing techniques</title><source>Wiley Journals</source><creator>Kumar, Kishan ; Samui, Pijush ; Choudhary, S. S.</creator><creatorcontrib>Kumar, Kishan ; Samui, Pijush ; Choudhary, S. S.</creatorcontrib><description>The state parameter (ѱ) accounts for both relative density and effective stress, which influence the cyclic stress or liquefaction characteristic of the soil significantly. This study presents a ѱ‐based probabilistic liquefaction evaluation method using six soft computing (SC) techniques. The liquefaction probability of failure (PL) is calculated using the first‐order second moment (FOSM) method based on the cone penetration test (CPT) database. Then, six SC techniques, such as Gaussian process regression (GPR), relevance vector machine (RVM), functional network (FN), genetic programming (GP), minimax probability machine regression (MPMR) and multivariate adaptive regression splines (MARS), are used to predict PL. The performance of these models is examined using nine statistical indices. Additionally, plots such as regression plots, Taylor diagrams, error matrix and rank analysis are shown to assess the SC model's performance. Finally, sensitivity analysis is performed using the cosine amplitude method (CAM) to assess the influence of input parameters on output. The current study demonstrates that SC models based on state parameter predict PL effectively. RVM and MPMR models closely follow the GPR model in terms of performance, which is superior to the other models. Notably, two equations are generated using GP and MARS models to predict PL. The results of the sensitivity analysis reveal the magnitude of earthquake (Mw) as the most sensitive parameter. The outcomes of this research will offer risk evaluations for geotechnical engineering designs and expand the use of state parameter‐based SC models in liquefaction analysis.
Soft computing techniques in geotechnical engineering offer robust predictive capabilities. This study develops soft computing (SC) techniques to assess reliability‐based liquefaction probability of failure (PL) using a state parameter‐based model. GPR leads in predictive performance, closely followed by RVM and MPMR. This research encourages the adoption of state parameter‐based SC models for liquefaction analysis.</description><identifier>ISSN: 0072-1050</identifier><identifier>EISSN: 1099-1034</identifier><identifier>DOI: 10.1002/gj.5049</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>cone penetration test ; Cone penetration tests ; Earthquake prediction ; Earthquakes ; Error analysis ; Gaussian process ; Genetic algorithms ; Geotechnical engineering ; Liquefaction ; Machine learning ; Parameter sensitivity ; Performance prediction ; Regression analysis ; Regression models ; Relative density ; Risk assessment ; Seismic activity ; Sensitivity analysis ; Soft computing ; Soil stresses ; Specific gravity ; Splines ; state parameter ; Statistical analysis ; Statistical models</subject><ispartof>Geological journal (Chichester, England), 2024-09, Vol.59 (9), p.2638-2654</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1819-182e8761b25520786651c2afab6224c8169b7dd31905509bf7394f212a9918bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgj.5049$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgj.5049$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kumar, Kishan</creatorcontrib><creatorcontrib>Samui, Pijush</creatorcontrib><creatorcontrib>Choudhary, S. S.</creatorcontrib><title>Reliability‐based state parameter liquefaction probability prediction using soft computing techniques</title><title>Geological journal (Chichester, England)</title><description>The state parameter (ѱ) accounts for both relative density and effective stress, which influence the cyclic stress or liquefaction characteristic of the soil significantly. This study presents a ѱ‐based probabilistic liquefaction evaluation method using six soft computing (SC) techniques. The liquefaction probability of failure (PL) is calculated using the first‐order second moment (FOSM) method based on the cone penetration test (CPT) database. Then, six SC techniques, such as Gaussian process regression (GPR), relevance vector machine (RVM), functional network (FN), genetic programming (GP), minimax probability machine regression (MPMR) and multivariate adaptive regression splines (MARS), are used to predict PL. The performance of these models is examined using nine statistical indices. Additionally, plots such as regression plots, Taylor diagrams, error matrix and rank analysis are shown to assess the SC model's performance. Finally, sensitivity analysis is performed using the cosine amplitude method (CAM) to assess the influence of input parameters on output. The current study demonstrates that SC models based on state parameter predict PL effectively. RVM and MPMR models closely follow the GPR model in terms of performance, which is superior to the other models. Notably, two equations are generated using GP and MARS models to predict PL. The results of the sensitivity analysis reveal the magnitude of earthquake (Mw) as the most sensitive parameter. The outcomes of this research will offer risk evaluations for geotechnical engineering designs and expand the use of state parameter‐based SC models in liquefaction analysis.
Soft computing techniques in geotechnical engineering offer robust predictive capabilities. This study develops soft computing (SC) techniques to assess reliability‐based liquefaction probability of failure (PL) using a state parameter‐based model. GPR leads in predictive performance, closely followed by RVM and MPMR. This research encourages the adoption of state parameter‐based SC models for liquefaction analysis.</description><subject>cone penetration test</subject><subject>Cone penetration tests</subject><subject>Earthquake prediction</subject><subject>Earthquakes</subject><subject>Error analysis</subject><subject>Gaussian process</subject><subject>Genetic algorithms</subject><subject>Geotechnical engineering</subject><subject>Liquefaction</subject><subject>Machine learning</subject><subject>Parameter sensitivity</subject><subject>Performance prediction</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Relative density</subject><subject>Risk assessment</subject><subject>Seismic activity</subject><subject>Sensitivity analysis</subject><subject>Soft computing</subject><subject>Soil stresses</subject><subject>Specific gravity</subject><subject>Splines</subject><subject>state parameter</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><issn>0072-1050</issn><issn>1099-1034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAQhoMouK7iKxQ8eJBdZ9KmbY6y6KoIgug5JGlaU7ptTbLI3nwEn9EnsbV79TT_DN_M_PyEnCMsEYBeV_WSQcIPyAyB8wVCnBySGUBGB83gmJx4XwMgQoIzUr2YxkplGxt2P1_fSnpTRD7IYKJeOrkxwbiosR9bU0odbNdGvevUfmHQprDTeOttW0W-K0Oku02_DWMbjH5vx2V_So5K2Xhztq9z8nZ3-7q6Xzw9rx9WN08LjTkObnNq8ixFRRmjkOVpylBTWUqVUproHFOusqKIkQNjwFWZxTwpKVLJOeZKx3NyMd0dbI5_g6i7rWuHlyJGZDEyhHSgLidKu857Z0rRO7uRbicQxJiiqGoxpjiQVxP5aRuz-w8T68c_-hecGnPA</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Kumar, Kishan</creator><creator>Samui, Pijush</creator><creator>Choudhary, S. S.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>202409</creationdate><title>Reliability‐based state parameter liquefaction probability prediction using soft computing techniques</title><author>Kumar, Kishan ; Samui, Pijush ; Choudhary, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1819-182e8761b25520786651c2afab6224c8169b7dd31905509bf7394f212a9918bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cone penetration test</topic><topic>Cone penetration tests</topic><topic>Earthquake prediction</topic><topic>Earthquakes</topic><topic>Error analysis</topic><topic>Gaussian process</topic><topic>Genetic algorithms</topic><topic>Geotechnical engineering</topic><topic>Liquefaction</topic><topic>Machine learning</topic><topic>Parameter sensitivity</topic><topic>Performance prediction</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Relative density</topic><topic>Risk assessment</topic><topic>Seismic activity</topic><topic>Sensitivity analysis</topic><topic>Soft computing</topic><topic>Soil stresses</topic><topic>Specific gravity</topic><topic>Splines</topic><topic>state parameter</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Kishan</creatorcontrib><creatorcontrib>Samui, Pijush</creatorcontrib><creatorcontrib>Choudhary, S. S.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Geological journal (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Kishan</au><au>Samui, Pijush</au><au>Choudhary, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability‐based state parameter liquefaction probability prediction using soft computing techniques</atitle><jtitle>Geological journal (Chichester, England)</jtitle><date>2024-09</date><risdate>2024</risdate><volume>59</volume><issue>9</issue><spage>2638</spage><epage>2654</epage><pages>2638-2654</pages><issn>0072-1050</issn><eissn>1099-1034</eissn><abstract>The state parameter (ѱ) accounts for both relative density and effective stress, which influence the cyclic stress or liquefaction characteristic of the soil significantly. This study presents a ѱ‐based probabilistic liquefaction evaluation method using six soft computing (SC) techniques. The liquefaction probability of failure (PL) is calculated using the first‐order second moment (FOSM) method based on the cone penetration test (CPT) database. Then, six SC techniques, such as Gaussian process regression (GPR), relevance vector machine (RVM), functional network (FN), genetic programming (GP), minimax probability machine regression (MPMR) and multivariate adaptive regression splines (MARS), are used to predict PL. The performance of these models is examined using nine statistical indices. Additionally, plots such as regression plots, Taylor diagrams, error matrix and rank analysis are shown to assess the SC model's performance. Finally, sensitivity analysis is performed using the cosine amplitude method (CAM) to assess the influence of input parameters on output. The current study demonstrates that SC models based on state parameter predict PL effectively. RVM and MPMR models closely follow the GPR model in terms of performance, which is superior to the other models. Notably, two equations are generated using GP and MARS models to predict PL. The results of the sensitivity analysis reveal the magnitude of earthquake (Mw) as the most sensitive parameter. The outcomes of this research will offer risk evaluations for geotechnical engineering designs and expand the use of state parameter‐based SC models in liquefaction analysis.
Soft computing techniques in geotechnical engineering offer robust predictive capabilities. This study develops soft computing (SC) techniques to assess reliability‐based liquefaction probability of failure (PL) using a state parameter‐based model. GPR leads in predictive performance, closely followed by RVM and MPMR. This research encourages the adoption of state parameter‐based SC models for liquefaction analysis.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/gj.5049</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0072-1050 |
ispartof | Geological journal (Chichester, England), 2024-09, Vol.59 (9), p.2638-2654 |
issn | 0072-1050 1099-1034 |
language | eng |
recordid | cdi_proquest_journals_3115315106 |
source | Wiley Journals |
subjects | cone penetration test Cone penetration tests Earthquake prediction Earthquakes Error analysis Gaussian process Genetic algorithms Geotechnical engineering Liquefaction Machine learning Parameter sensitivity Performance prediction Regression analysis Regression models Relative density Risk assessment Seismic activity Sensitivity analysis Soft computing Soil stresses Specific gravity Splines state parameter Statistical analysis Statistical models |
title | Reliability‐based state parameter liquefaction probability prediction using soft computing techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%E2%80%90based%20state%20parameter%20liquefaction%20probability%20prediction%20using%20soft%20computing%20techniques&rft.jtitle=Geological%20journal%20(Chichester,%20England)&rft.au=Kumar,%20Kishan&rft.date=2024-09&rft.volume=59&rft.issue=9&rft.spage=2638&rft.epage=2654&rft.pages=2638-2654&rft.issn=0072-1050&rft.eissn=1099-1034&rft_id=info:doi/10.1002/gj.5049&rft_dat=%3Cproquest_cross%3E3115315106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115315106&rft_id=info:pmid/&rfr_iscdi=true |