Secondary Coordination Sphere Engineering of Single‐Sn‐Atom catalyst via P Doping for Efficient CO2 Electroreduction

The regulation of the local microenvironment in the single‐atom catalysts affords a scheme for accelerating the overall reaction kinetics of electrochemical CO2 reduction reaction (CO2RR), which is of vital importance but remains challenging. Herein, a carbon nanotube‐supported single‐Sn‐atom cataly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2024-10, Vol.14 (38), p.n/a
Hauptverfasser: Yue, Caizhen, Yang, Xiaobo, Zhang, Xiong, Wang, Shifu, Xu, Wei, Chen, Ruru, Wang, Jiuyi, Yin, Jie, Huang, Yanqiang, Li, Xuning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 38
container_start_page
container_title Advanced energy materials
container_volume 14
creator Yue, Caizhen
Yang, Xiaobo
Zhang, Xiong
Wang, Shifu
Xu, Wei
Chen, Ruru
Wang, Jiuyi
Yin, Jie
Huang, Yanqiang
Li, Xuning
description The regulation of the local microenvironment in the single‐atom catalysts affords a scheme for accelerating the overall reaction kinetics of electrochemical CO2 reduction reaction (CO2RR), which is of vital importance but remains challenging. Herein, a carbon nanotube‐supported single‐Sn‐atom catalyst (P‐SnN4‐CNT) is developed by a modified pyrolysis procedure with P‐doping into the second coordination shell of SnN4 moiety to modulate the electron structure of metal Sn center. The resulting P‐SnN4‐CNT delivered a high CO partial current density of −380 mA cm−2 with Faradaic efficiency (FE) of CO above 90% across a wide range of −0.5 to −0.8 V versus reversible hydrogen electrode (vs RHE), along with optimal FE (CO) of ≈98.5% at −0.6 V versus RHE in a flow cell. Moreover, P‐SnN4‐CNT achieved an extremely high turnover frequency of 126 471 h−1 with an applied potential of −0.8 V versus RHE, which ranks the best among the reported M─N─C catalysts for electrocatalytic CO2 reduction. The combination of in situ characterization techniques and density functional theory calculation revealed that the doping of P atoms benefited the activation and hydrogenation steps of CO2 and promoted the Sn4+ reduction to Sn2+ during the reaction process, where Sn2+ is identified as the active site for the CO generation. The work provides a clear mechanistic insight for both electron structure optimization and identification of active sites by local microenvironment regulation of single‐Sn‐atom, which shall pave a way for the exploitation of other M─N─C catalysts with high CO2RR performance. A remarkably enhanced CO2RR performance is achieved by engineering the secondary coordination sphere of a single‐Sn‐atom catalyst via P doping. The promoted reduction of Sn4+ to Sn2+, with in situ generated Sn2+ as the true active site, reduces the energy barrier for the hydrogenation steps of CO2, thus boosting its electroreduction to CO.
doi_str_mv 10.1002/aenm.202401448
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3115291081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115291081</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1638-fff36488ff59d74abaad6e05f5db9938733cdd857aa8a858ddc282cdf6ac2ea83</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsNRuXQ-4Tp1X0smyxPiAaoXoepjOo05JZ-IkVbvzJ_gb_SUmVHoX95wLh3vgA-ASoylGiFxL47dTgghDmDF-AkY4wyzJOEOnR0_JOZi07Qb1w3KMKB2Br8qo4LWMe1iEELXzsnPBw6p5M9HA0q-dNyY6v4bBwqrX2vx-_1S-X_MubKGSnaz3bQc_nITP8CY0Q9aGCEtrnXLGd7BYEljWRnUxRKN3ami4AGdW1q2Z_OsYvN6WL8V9sljePRTzRdLgjPLEWkszxrm1aa5nTK6k1JlBqU31Ks8pn1GqtObpTEouecq1VoQTpW0mFTGS0zG4OvxtYnjfmbYTm7CLvq8UFOOU9Bw47lP5IfXparMXTXTbHonASAx0xUBXHOmKefn0eLzoH4VAdDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115291081</pqid></control><display><type>article</type><title>Secondary Coordination Sphere Engineering of Single‐Sn‐Atom catalyst via P Doping for Efficient CO2 Electroreduction</title><source>Wiley Journals</source><creator>Yue, Caizhen ; Yang, Xiaobo ; Zhang, Xiong ; Wang, Shifu ; Xu, Wei ; Chen, Ruru ; Wang, Jiuyi ; Yin, Jie ; Huang, Yanqiang ; Li, Xuning</creator><creatorcontrib>Yue, Caizhen ; Yang, Xiaobo ; Zhang, Xiong ; Wang, Shifu ; Xu, Wei ; Chen, Ruru ; Wang, Jiuyi ; Yin, Jie ; Huang, Yanqiang ; Li, Xuning</creatorcontrib><description>The regulation of the local microenvironment in the single‐atom catalysts affords a scheme for accelerating the overall reaction kinetics of electrochemical CO2 reduction reaction (CO2RR), which is of vital importance but remains challenging. Herein, a carbon nanotube‐supported single‐Sn‐atom catalyst (P‐SnN4‐CNT) is developed by a modified pyrolysis procedure with P‐doping into the second coordination shell of SnN4 moiety to modulate the electron structure of metal Sn center. The resulting P‐SnN4‐CNT delivered a high CO partial current density of −380 mA cm−2 with Faradaic efficiency (FE) of CO above 90% across a wide range of −0.5 to −0.8 V versus reversible hydrogen electrode (vs RHE), along with optimal FE (CO) of ≈98.5% at −0.6 V versus RHE in a flow cell. Moreover, P‐SnN4‐CNT achieved an extremely high turnover frequency of 126 471 h−1 with an applied potential of −0.8 V versus RHE, which ranks the best among the reported M─N─C catalysts for electrocatalytic CO2 reduction. The combination of in situ characterization techniques and density functional theory calculation revealed that the doping of P atoms benefited the activation and hydrogenation steps of CO2 and promoted the Sn4+ reduction to Sn2+ during the reaction process, where Sn2+ is identified as the active site for the CO generation. The work provides a clear mechanistic insight for both electron structure optimization and identification of active sites by local microenvironment regulation of single‐Sn‐atom, which shall pave a way for the exploitation of other M─N─C catalysts with high CO2RR performance. A remarkably enhanced CO2RR performance is achieved by engineering the secondary coordination sphere of a single‐Sn‐atom catalyst via P doping. The promoted reduction of Sn4+ to Sn2+, with in situ generated Sn2+ as the true active site, reduces the energy barrier for the hydrogenation steps of CO2, thus boosting its electroreduction to CO.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202401448</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Atomic properties ; Carbon dioxide ; Carbon nanotubes ; Catalysts ; Chemical reduction ; CO2 electroreduction ; Coordination ; Density functional theory ; Doping ; electron structure regulation ; Electronic structure ; Pyrolysis ; P‐doping ; Reaction kinetics ; Single‐Sn‐atom</subject><ispartof>Advanced energy materials, 2024-10, Vol.14 (38), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0009-7353-842X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202401448$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202401448$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yue, Caizhen</creatorcontrib><creatorcontrib>Yang, Xiaobo</creatorcontrib><creatorcontrib>Zhang, Xiong</creatorcontrib><creatorcontrib>Wang, Shifu</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Chen, Ruru</creatorcontrib><creatorcontrib>Wang, Jiuyi</creatorcontrib><creatorcontrib>Yin, Jie</creatorcontrib><creatorcontrib>Huang, Yanqiang</creatorcontrib><creatorcontrib>Li, Xuning</creatorcontrib><title>Secondary Coordination Sphere Engineering of Single‐Sn‐Atom catalyst via P Doping for Efficient CO2 Electroreduction</title><title>Advanced energy materials</title><description>The regulation of the local microenvironment in the single‐atom catalysts affords a scheme for accelerating the overall reaction kinetics of electrochemical CO2 reduction reaction (CO2RR), which is of vital importance but remains challenging. Herein, a carbon nanotube‐supported single‐Sn‐atom catalyst (P‐SnN4‐CNT) is developed by a modified pyrolysis procedure with P‐doping into the second coordination shell of SnN4 moiety to modulate the electron structure of metal Sn center. The resulting P‐SnN4‐CNT delivered a high CO partial current density of −380 mA cm−2 with Faradaic efficiency (FE) of CO above 90% across a wide range of −0.5 to −0.8 V versus reversible hydrogen electrode (vs RHE), along with optimal FE (CO) of ≈98.5% at −0.6 V versus RHE in a flow cell. Moreover, P‐SnN4‐CNT achieved an extremely high turnover frequency of 126 471 h−1 with an applied potential of −0.8 V versus RHE, which ranks the best among the reported M─N─C catalysts for electrocatalytic CO2 reduction. The combination of in situ characterization techniques and density functional theory calculation revealed that the doping of P atoms benefited the activation and hydrogenation steps of CO2 and promoted the Sn4+ reduction to Sn2+ during the reaction process, where Sn2+ is identified as the active site for the CO generation. The work provides a clear mechanistic insight for both electron structure optimization and identification of active sites by local microenvironment regulation of single‐Sn‐atom, which shall pave a way for the exploitation of other M─N─C catalysts with high CO2RR performance. A remarkably enhanced CO2RR performance is achieved by engineering the secondary coordination sphere of a single‐Sn‐atom catalyst via P doping. The promoted reduction of Sn4+ to Sn2+, with in situ generated Sn2+ as the true active site, reduces the energy barrier for the hydrogenation steps of CO2, thus boosting its electroreduction to CO.</description><subject>Atomic properties</subject><subject>Carbon dioxide</subject><subject>Carbon nanotubes</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>CO2 electroreduction</subject><subject>Coordination</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>electron structure regulation</subject><subject>Electronic structure</subject><subject>Pyrolysis</subject><subject>P‐doping</subject><subject>Reaction kinetics</subject><subject>Single‐Sn‐atom</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsNRuXQ-4Tp1X0smyxPiAaoXoepjOo05JZ-IkVbvzJ_gb_SUmVHoX95wLh3vgA-ASoylGiFxL47dTgghDmDF-AkY4wyzJOEOnR0_JOZi07Qb1w3KMKB2Br8qo4LWMe1iEELXzsnPBw6p5M9HA0q-dNyY6v4bBwqrX2vx-_1S-X_MubKGSnaz3bQc_nITP8CY0Q9aGCEtrnXLGd7BYEljWRnUxRKN3ami4AGdW1q2Z_OsYvN6WL8V9sljePRTzRdLgjPLEWkszxrm1aa5nTK6k1JlBqU31Ks8pn1GqtObpTEouecq1VoQTpW0mFTGS0zG4OvxtYnjfmbYTm7CLvq8UFOOU9Bw47lP5IfXparMXTXTbHonASAx0xUBXHOmKefn0eLzoH4VAdDk</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Yue, Caizhen</creator><creator>Yang, Xiaobo</creator><creator>Zhang, Xiong</creator><creator>Wang, Shifu</creator><creator>Xu, Wei</creator><creator>Chen, Ruru</creator><creator>Wang, Jiuyi</creator><creator>Yin, Jie</creator><creator>Huang, Yanqiang</creator><creator>Li, Xuning</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-7353-842X</orcidid></search><sort><creationdate>20241001</creationdate><title>Secondary Coordination Sphere Engineering of Single‐Sn‐Atom catalyst via P Doping for Efficient CO2 Electroreduction</title><author>Yue, Caizhen ; Yang, Xiaobo ; Zhang, Xiong ; Wang, Shifu ; Xu, Wei ; Chen, Ruru ; Wang, Jiuyi ; Yin, Jie ; Huang, Yanqiang ; Li, Xuning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1638-fff36488ff59d74abaad6e05f5db9938733cdd857aa8a858ddc282cdf6ac2ea83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic properties</topic><topic>Carbon dioxide</topic><topic>Carbon nanotubes</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>CO2 electroreduction</topic><topic>Coordination</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>electron structure regulation</topic><topic>Electronic structure</topic><topic>Pyrolysis</topic><topic>P‐doping</topic><topic>Reaction kinetics</topic><topic>Single‐Sn‐atom</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Caizhen</creatorcontrib><creatorcontrib>Yang, Xiaobo</creatorcontrib><creatorcontrib>Zhang, Xiong</creatorcontrib><creatorcontrib>Wang, Shifu</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Chen, Ruru</creatorcontrib><creatorcontrib>Wang, Jiuyi</creatorcontrib><creatorcontrib>Yin, Jie</creatorcontrib><creatorcontrib>Huang, Yanqiang</creatorcontrib><creatorcontrib>Li, Xuning</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Caizhen</au><au>Yang, Xiaobo</au><au>Zhang, Xiong</au><au>Wang, Shifu</au><au>Xu, Wei</au><au>Chen, Ruru</au><au>Wang, Jiuyi</au><au>Yin, Jie</au><au>Huang, Yanqiang</au><au>Li, Xuning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secondary Coordination Sphere Engineering of Single‐Sn‐Atom catalyst via P Doping for Efficient CO2 Electroreduction</atitle><jtitle>Advanced energy materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>14</volume><issue>38</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The regulation of the local microenvironment in the single‐atom catalysts affords a scheme for accelerating the overall reaction kinetics of electrochemical CO2 reduction reaction (CO2RR), which is of vital importance but remains challenging. Herein, a carbon nanotube‐supported single‐Sn‐atom catalyst (P‐SnN4‐CNT) is developed by a modified pyrolysis procedure with P‐doping into the second coordination shell of SnN4 moiety to modulate the electron structure of metal Sn center. The resulting P‐SnN4‐CNT delivered a high CO partial current density of −380 mA cm−2 with Faradaic efficiency (FE) of CO above 90% across a wide range of −0.5 to −0.8 V versus reversible hydrogen electrode (vs RHE), along with optimal FE (CO) of ≈98.5% at −0.6 V versus RHE in a flow cell. Moreover, P‐SnN4‐CNT achieved an extremely high turnover frequency of 126 471 h−1 with an applied potential of −0.8 V versus RHE, which ranks the best among the reported M─N─C catalysts for electrocatalytic CO2 reduction. The combination of in situ characterization techniques and density functional theory calculation revealed that the doping of P atoms benefited the activation and hydrogenation steps of CO2 and promoted the Sn4+ reduction to Sn2+ during the reaction process, where Sn2+ is identified as the active site for the CO generation. The work provides a clear mechanistic insight for both electron structure optimization and identification of active sites by local microenvironment regulation of single‐Sn‐atom, which shall pave a way for the exploitation of other M─N─C catalysts with high CO2RR performance. A remarkably enhanced CO2RR performance is achieved by engineering the secondary coordination sphere of a single‐Sn‐atom catalyst via P doping. The promoted reduction of Sn4+ to Sn2+, with in situ generated Sn2+ as the true active site, reduces the energy barrier for the hydrogenation steps of CO2, thus boosting its electroreduction to CO.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202401448</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0009-7353-842X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2024-10, Vol.14 (38), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_3115291081
source Wiley Journals
subjects Atomic properties
Carbon dioxide
Carbon nanotubes
Catalysts
Chemical reduction
CO2 electroreduction
Coordination
Density functional theory
Doping
electron structure regulation
Electronic structure
Pyrolysis
P‐doping
Reaction kinetics
Single‐Sn‐atom
title Secondary Coordination Sphere Engineering of Single‐Sn‐Atom catalyst via P Doping for Efficient CO2 Electroreduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T11%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secondary%20Coordination%20Sphere%20Engineering%20of%20Single%E2%80%90Sn%E2%80%90Atom%20catalyst%20via%20P%20Doping%20for%20Efficient%20CO2%20Electroreduction&rft.jtitle=Advanced%20energy%20materials&rft.au=Yue,%20Caizhen&rft.date=2024-10-01&rft.volume=14&rft.issue=38&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202401448&rft_dat=%3Cproquest_wiley%3E3115291081%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115291081&rft_id=info:pmid/&rfr_iscdi=true