Secondary Coordination Sphere Engineering of Single‐Sn‐Atom catalyst via P Doping for Efficient CO2 Electroreduction
The regulation of the local microenvironment in the single‐atom catalysts affords a scheme for accelerating the overall reaction kinetics of electrochemical CO2 reduction reaction (CO2RR), which is of vital importance but remains challenging. Herein, a carbon nanotube‐supported single‐Sn‐atom cataly...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2024-10, Vol.14 (38), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 38 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 14 |
creator | Yue, Caizhen Yang, Xiaobo Zhang, Xiong Wang, Shifu Xu, Wei Chen, Ruru Wang, Jiuyi Yin, Jie Huang, Yanqiang Li, Xuning |
description | The regulation of the local microenvironment in the single‐atom catalysts affords a scheme for accelerating the overall reaction kinetics of electrochemical CO2 reduction reaction (CO2RR), which is of vital importance but remains challenging. Herein, a carbon nanotube‐supported single‐Sn‐atom catalyst (P‐SnN4‐CNT) is developed by a modified pyrolysis procedure with P‐doping into the second coordination shell of SnN4 moiety to modulate the electron structure of metal Sn center. The resulting P‐SnN4‐CNT delivered a high CO partial current density of −380 mA cm−2 with Faradaic efficiency (FE) of CO above 90% across a wide range of −0.5 to −0.8 V versus reversible hydrogen electrode (vs RHE), along with optimal FE (CO) of ≈98.5% at −0.6 V versus RHE in a flow cell. Moreover, P‐SnN4‐CNT achieved an extremely high turnover frequency of 126 471 h−1 with an applied potential of −0.8 V versus RHE, which ranks the best among the reported M─N─C catalysts for electrocatalytic CO2 reduction. The combination of in situ characterization techniques and density functional theory calculation revealed that the doping of P atoms benefited the activation and hydrogenation steps of CO2 and promoted the Sn4+ reduction to Sn2+ during the reaction process, where Sn2+ is identified as the active site for the CO generation. The work provides a clear mechanistic insight for both electron structure optimization and identification of active sites by local microenvironment regulation of single‐Sn‐atom, which shall pave a way for the exploitation of other M─N─C catalysts with high CO2RR performance.
A remarkably enhanced CO2RR performance is achieved by engineering the secondary coordination sphere of a single‐Sn‐atom catalyst via P doping. The promoted reduction of Sn4+ to Sn2+, with in situ generated Sn2+ as the true active site, reduces the energy barrier for the hydrogenation steps of CO2, thus boosting its electroreduction to CO. |
doi_str_mv | 10.1002/aenm.202401448 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3115291081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115291081</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1638-fff36488ff59d74abaad6e05f5db9938733cdd857aa8a858ddc282cdf6ac2ea83</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsNRuXQ-4Tp1X0smyxPiAaoXoepjOo05JZ-IkVbvzJ_gb_SUmVHoX95wLh3vgA-ASoylGiFxL47dTgghDmDF-AkY4wyzJOEOnR0_JOZi07Qb1w3KMKB2Br8qo4LWMe1iEELXzsnPBw6p5M9HA0q-dNyY6v4bBwqrX2vx-_1S-X_MubKGSnaz3bQc_nITP8CY0Q9aGCEtrnXLGd7BYEljWRnUxRKN3ami4AGdW1q2Z_OsYvN6WL8V9sljePRTzRdLgjPLEWkszxrm1aa5nTK6k1JlBqU31Ks8pn1GqtObpTEouecq1VoQTpW0mFTGS0zG4OvxtYnjfmbYTm7CLvq8UFOOU9Bw47lP5IfXparMXTXTbHonASAx0xUBXHOmKefn0eLzoH4VAdDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115291081</pqid></control><display><type>article</type><title>Secondary Coordination Sphere Engineering of Single‐Sn‐Atom catalyst via P Doping for Efficient CO2 Electroreduction</title><source>Wiley Journals</source><creator>Yue, Caizhen ; Yang, Xiaobo ; Zhang, Xiong ; Wang, Shifu ; Xu, Wei ; Chen, Ruru ; Wang, Jiuyi ; Yin, Jie ; Huang, Yanqiang ; Li, Xuning</creator><creatorcontrib>Yue, Caizhen ; Yang, Xiaobo ; Zhang, Xiong ; Wang, Shifu ; Xu, Wei ; Chen, Ruru ; Wang, Jiuyi ; Yin, Jie ; Huang, Yanqiang ; Li, Xuning</creatorcontrib><description>The regulation of the local microenvironment in the single‐atom catalysts affords a scheme for accelerating the overall reaction kinetics of electrochemical CO2 reduction reaction (CO2RR), which is of vital importance but remains challenging. Herein, a carbon nanotube‐supported single‐Sn‐atom catalyst (P‐SnN4‐CNT) is developed by a modified pyrolysis procedure with P‐doping into the second coordination shell of SnN4 moiety to modulate the electron structure of metal Sn center. The resulting P‐SnN4‐CNT delivered a high CO partial current density of −380 mA cm−2 with Faradaic efficiency (FE) of CO above 90% across a wide range of −0.5 to −0.8 V versus reversible hydrogen electrode (vs RHE), along with optimal FE (CO) of ≈98.5% at −0.6 V versus RHE in a flow cell. Moreover, P‐SnN4‐CNT achieved an extremely high turnover frequency of 126 471 h−1 with an applied potential of −0.8 V versus RHE, which ranks the best among the reported M─N─C catalysts for electrocatalytic CO2 reduction. The combination of in situ characterization techniques and density functional theory calculation revealed that the doping of P atoms benefited the activation and hydrogenation steps of CO2 and promoted the Sn4+ reduction to Sn2+ during the reaction process, where Sn2+ is identified as the active site for the CO generation. The work provides a clear mechanistic insight for both electron structure optimization and identification of active sites by local microenvironment regulation of single‐Sn‐atom, which shall pave a way for the exploitation of other M─N─C catalysts with high CO2RR performance.
A remarkably enhanced CO2RR performance is achieved by engineering the secondary coordination sphere of a single‐Sn‐atom catalyst via P doping. The promoted reduction of Sn4+ to Sn2+, with in situ generated Sn2+ as the true active site, reduces the energy barrier for the hydrogenation steps of CO2, thus boosting its electroreduction to CO.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202401448</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Atomic properties ; Carbon dioxide ; Carbon nanotubes ; Catalysts ; Chemical reduction ; CO2 electroreduction ; Coordination ; Density functional theory ; Doping ; electron structure regulation ; Electronic structure ; Pyrolysis ; P‐doping ; Reaction kinetics ; Single‐Sn‐atom</subject><ispartof>Advanced energy materials, 2024-10, Vol.14 (38), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0009-7353-842X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202401448$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202401448$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yue, Caizhen</creatorcontrib><creatorcontrib>Yang, Xiaobo</creatorcontrib><creatorcontrib>Zhang, Xiong</creatorcontrib><creatorcontrib>Wang, Shifu</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Chen, Ruru</creatorcontrib><creatorcontrib>Wang, Jiuyi</creatorcontrib><creatorcontrib>Yin, Jie</creatorcontrib><creatorcontrib>Huang, Yanqiang</creatorcontrib><creatorcontrib>Li, Xuning</creatorcontrib><title>Secondary Coordination Sphere Engineering of Single‐Sn‐Atom catalyst via P Doping for Efficient CO2 Electroreduction</title><title>Advanced energy materials</title><description>The regulation of the local microenvironment in the single‐atom catalysts affords a scheme for accelerating the overall reaction kinetics of electrochemical CO2 reduction reaction (CO2RR), which is of vital importance but remains challenging. Herein, a carbon nanotube‐supported single‐Sn‐atom catalyst (P‐SnN4‐CNT) is developed by a modified pyrolysis procedure with P‐doping into the second coordination shell of SnN4 moiety to modulate the electron structure of metal Sn center. The resulting P‐SnN4‐CNT delivered a high CO partial current density of −380 mA cm−2 with Faradaic efficiency (FE) of CO above 90% across a wide range of −0.5 to −0.8 V versus reversible hydrogen electrode (vs RHE), along with optimal FE (CO) of ≈98.5% at −0.6 V versus RHE in a flow cell. Moreover, P‐SnN4‐CNT achieved an extremely high turnover frequency of 126 471 h−1 with an applied potential of −0.8 V versus RHE, which ranks the best among the reported M─N─C catalysts for electrocatalytic CO2 reduction. The combination of in situ characterization techniques and density functional theory calculation revealed that the doping of P atoms benefited the activation and hydrogenation steps of CO2 and promoted the Sn4+ reduction to Sn2+ during the reaction process, where Sn2+ is identified as the active site for the CO generation. The work provides a clear mechanistic insight for both electron structure optimization and identification of active sites by local microenvironment regulation of single‐Sn‐atom, which shall pave a way for the exploitation of other M─N─C catalysts with high CO2RR performance.
A remarkably enhanced CO2RR performance is achieved by engineering the secondary coordination sphere of a single‐Sn‐atom catalyst via P doping. The promoted reduction of Sn4+ to Sn2+, with in situ generated Sn2+ as the true active site, reduces the energy barrier for the hydrogenation steps of CO2, thus boosting its electroreduction to CO.</description><subject>Atomic properties</subject><subject>Carbon dioxide</subject><subject>Carbon nanotubes</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>CO2 electroreduction</subject><subject>Coordination</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>electron structure regulation</subject><subject>Electronic structure</subject><subject>Pyrolysis</subject><subject>P‐doping</subject><subject>Reaction kinetics</subject><subject>Single‐Sn‐atom</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsNRuXQ-4Tp1X0smyxPiAaoXoepjOo05JZ-IkVbvzJ_gb_SUmVHoX95wLh3vgA-ASoylGiFxL47dTgghDmDF-AkY4wyzJOEOnR0_JOZi07Qb1w3KMKB2Br8qo4LWMe1iEELXzsnPBw6p5M9HA0q-dNyY6v4bBwqrX2vx-_1S-X_MubKGSnaz3bQc_nITP8CY0Q9aGCEtrnXLGd7BYEljWRnUxRKN3ami4AGdW1q2Z_OsYvN6WL8V9sljePRTzRdLgjPLEWkszxrm1aa5nTK6k1JlBqU31Ks8pn1GqtObpTEouecq1VoQTpW0mFTGS0zG4OvxtYnjfmbYTm7CLvq8UFOOU9Bw47lP5IfXparMXTXTbHonASAx0xUBXHOmKefn0eLzoH4VAdDk</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Yue, Caizhen</creator><creator>Yang, Xiaobo</creator><creator>Zhang, Xiong</creator><creator>Wang, Shifu</creator><creator>Xu, Wei</creator><creator>Chen, Ruru</creator><creator>Wang, Jiuyi</creator><creator>Yin, Jie</creator><creator>Huang, Yanqiang</creator><creator>Li, Xuning</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-7353-842X</orcidid></search><sort><creationdate>20241001</creationdate><title>Secondary Coordination Sphere Engineering of Single‐Sn‐Atom catalyst via P Doping for Efficient CO2 Electroreduction</title><author>Yue, Caizhen ; Yang, Xiaobo ; Zhang, Xiong ; Wang, Shifu ; Xu, Wei ; Chen, Ruru ; Wang, Jiuyi ; Yin, Jie ; Huang, Yanqiang ; Li, Xuning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1638-fff36488ff59d74abaad6e05f5db9938733cdd857aa8a858ddc282cdf6ac2ea83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic properties</topic><topic>Carbon dioxide</topic><topic>Carbon nanotubes</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>CO2 electroreduction</topic><topic>Coordination</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>electron structure regulation</topic><topic>Electronic structure</topic><topic>Pyrolysis</topic><topic>P‐doping</topic><topic>Reaction kinetics</topic><topic>Single‐Sn‐atom</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Caizhen</creatorcontrib><creatorcontrib>Yang, Xiaobo</creatorcontrib><creatorcontrib>Zhang, Xiong</creatorcontrib><creatorcontrib>Wang, Shifu</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Chen, Ruru</creatorcontrib><creatorcontrib>Wang, Jiuyi</creatorcontrib><creatorcontrib>Yin, Jie</creatorcontrib><creatorcontrib>Huang, Yanqiang</creatorcontrib><creatorcontrib>Li, Xuning</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Caizhen</au><au>Yang, Xiaobo</au><au>Zhang, Xiong</au><au>Wang, Shifu</au><au>Xu, Wei</au><au>Chen, Ruru</au><au>Wang, Jiuyi</au><au>Yin, Jie</au><au>Huang, Yanqiang</au><au>Li, Xuning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secondary Coordination Sphere Engineering of Single‐Sn‐Atom catalyst via P Doping for Efficient CO2 Electroreduction</atitle><jtitle>Advanced energy materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>14</volume><issue>38</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The regulation of the local microenvironment in the single‐atom catalysts affords a scheme for accelerating the overall reaction kinetics of electrochemical CO2 reduction reaction (CO2RR), which is of vital importance but remains challenging. Herein, a carbon nanotube‐supported single‐Sn‐atom catalyst (P‐SnN4‐CNT) is developed by a modified pyrolysis procedure with P‐doping into the second coordination shell of SnN4 moiety to modulate the electron structure of metal Sn center. The resulting P‐SnN4‐CNT delivered a high CO partial current density of −380 mA cm−2 with Faradaic efficiency (FE) of CO above 90% across a wide range of −0.5 to −0.8 V versus reversible hydrogen electrode (vs RHE), along with optimal FE (CO) of ≈98.5% at −0.6 V versus RHE in a flow cell. Moreover, P‐SnN4‐CNT achieved an extremely high turnover frequency of 126 471 h−1 with an applied potential of −0.8 V versus RHE, which ranks the best among the reported M─N─C catalysts for electrocatalytic CO2 reduction. The combination of in situ characterization techniques and density functional theory calculation revealed that the doping of P atoms benefited the activation and hydrogenation steps of CO2 and promoted the Sn4+ reduction to Sn2+ during the reaction process, where Sn2+ is identified as the active site for the CO generation. The work provides a clear mechanistic insight for both electron structure optimization and identification of active sites by local microenvironment regulation of single‐Sn‐atom, which shall pave a way for the exploitation of other M─N─C catalysts with high CO2RR performance.
A remarkably enhanced CO2RR performance is achieved by engineering the secondary coordination sphere of a single‐Sn‐atom catalyst via P doping. The promoted reduction of Sn4+ to Sn2+, with in situ generated Sn2+ as the true active site, reduces the energy barrier for the hydrogenation steps of CO2, thus boosting its electroreduction to CO.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202401448</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0009-7353-842X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2024-10, Vol.14 (38), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_3115291081 |
source | Wiley Journals |
subjects | Atomic properties Carbon dioxide Carbon nanotubes Catalysts Chemical reduction CO2 electroreduction Coordination Density functional theory Doping electron structure regulation Electronic structure Pyrolysis P‐doping Reaction kinetics Single‐Sn‐atom |
title | Secondary Coordination Sphere Engineering of Single‐Sn‐Atom catalyst via P Doping for Efficient CO2 Electroreduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T11%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secondary%20Coordination%20Sphere%20Engineering%20of%20Single%E2%80%90Sn%E2%80%90Atom%20catalyst%20via%20P%20Doping%20for%20Efficient%20CO2%20Electroreduction&rft.jtitle=Advanced%20energy%20materials&rft.au=Yue,%20Caizhen&rft.date=2024-10-01&rft.volume=14&rft.issue=38&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202401448&rft_dat=%3Cproquest_wiley%3E3115291081%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115291081&rft_id=info:pmid/&rfr_iscdi=true |