Nonlinear forced vibration analysis of doubly curved shells via the parameterization method for invariant manifold

In this work, the nonlinear forced vibrations of doubly curved shells are studied. For this, the Forced Resonance Curves of four different shells were determined: a shallow cylindrical panel, a shallow spherical panel, a non-shallow spherical panel, and a hyperbolic paraboloid. To model the shells,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2024-12, Vol.112 (23), p.20677-20701
Hauptverfasser: Pinho, Flávio Augusto Xavier Carneiro, Amabili, Marco, Del Prado, Zenón José Guzmán Nuñez, da Silva, Frederico Martins Alves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20701
container_issue 23
container_start_page 20677
container_title Nonlinear dynamics
container_volume 112
creator Pinho, Flávio Augusto Xavier Carneiro
Amabili, Marco
Del Prado, Zenón José Guzmán Nuñez
da Silva, Frederico Martins Alves
description In this work, the nonlinear forced vibrations of doubly curved shells are studied. For this, the Forced Resonance Curves of four different shells were determined: a shallow cylindrical panel, a shallow spherical panel, a non-shallow spherical panel, and a hyperbolic paraboloid. To model the shells, the Koiter’s nonlinear shell theory, for both shallow and non-shallow shells, was applied. The forced resonance curves were determined using an adaptive harmonic balance method and through a reduced-order model (ROM) via parameterization method for invariant manifolds. The findings of this study reveal the complex dynamic behavior exhibited by doubly curved shells, with various types of bifurcations such as Saddle–Node, Neimark–Sacker, and Period Doubling bifurcations. Thanks to the general treatment of the forcing term implemented in the parameterization method, the results highlight how complex high-order resonances can be retrieved by the ROM, up to a comfortable range of vibration and forcing amplitudes tested. Finally, it clearly demonstrates how the Nonlinear Normal Modes as invariant manifolds provide accurate and efficient ROMs for nonlinear vibrations of shells.
doi_str_mv 10.1007/s11071-024-10135-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3115237415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115237415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-ff79f06eb3201df49942b9315a1fe4f5926b7ae7bbe3ebfe5cdec75e6e8ea5b43</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKeA59VJsmm6Ryl-QdGLQm8h2Z3YlO2mJruF-utNXcGbpzDkeV5mXkKuGNwwAHWbGAPFCuBlwYAJWagjMmFSiYJPq-UxmUCVv6CC5Sk5S2kNAILDbELiS-ha36GJ1IVYY0N33kbT-9BR05l2n3yiwdEmDLbd03qIu8ykFbZtyqih_Qrp1kSzwR6j_xrNPKxCc0ikvtuZ6E3X043pvAttc0FOnGkTXv6-5-T94f5t_lQsXh-f53eLouYAfeGcqhxM0eZFWePKqiq5rQSThjksnaz41CqDyloUaB3KusFaSZziDI20pTgn12PuNobPAVOv12GI-aakBWOSC1UymSk-UnUMKUV0ehv9xsS9ZqAP3eqxW5271T_dapUlMUopw90Hxr_of6xvU4KAIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115237415</pqid></control><display><type>article</type><title>Nonlinear forced vibration analysis of doubly curved shells via the parameterization method for invariant manifold</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pinho, Flávio Augusto Xavier Carneiro ; Amabili, Marco ; Del Prado, Zenón José Guzmán Nuñez ; da Silva, Frederico Martins Alves</creator><creatorcontrib>Pinho, Flávio Augusto Xavier Carneiro ; Amabili, Marco ; Del Prado, Zenón José Guzmán Nuñez ; da Silva, Frederico Martins Alves</creatorcontrib><description>In this work, the nonlinear forced vibrations of doubly curved shells are studied. For this, the Forced Resonance Curves of four different shells were determined: a shallow cylindrical panel, a shallow spherical panel, a non-shallow spherical panel, and a hyperbolic paraboloid. To model the shells, the Koiter’s nonlinear shell theory, for both shallow and non-shallow shells, was applied. The forced resonance curves were determined using an adaptive harmonic balance method and through a reduced-order model (ROM) via parameterization method for invariant manifolds. The findings of this study reveal the complex dynamic behavior exhibited by doubly curved shells, with various types of bifurcations such as Saddle–Node, Neimark–Sacker, and Period Doubling bifurcations. Thanks to the general treatment of the forcing term implemented in the parameterization method, the results highlight how complex high-order resonances can be retrieved by the ROM, up to a comfortable range of vibration and forcing amplitudes tested. Finally, it clearly demonstrates how the Nonlinear Normal Modes as invariant manifolds provide accurate and efficient ROMs for nonlinear vibrations of shells.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-10135-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Bifurcations ; Classical Mechanics ; Control ; Curved panels ; Cylindrical shells ; Dynamical Systems ; Engineering ; Forced vibration ; Graphene ; Harmonic balance method ; Invariants ; Manifolds ; Mechanical Engineering ; Parameterization ; Period doubling ; Reduced order models ; Resonance ; Shallow shells ; Shell theory ; Spherical shells ; Vibration ; Vibration analysis</subject><ispartof>Nonlinear dynamics, 2024-12, Vol.112 (23), p.20677-20701</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-ff79f06eb3201df49942b9315a1fe4f5926b7ae7bbe3ebfe5cdec75e6e8ea5b43</cites><orcidid>0000-0003-0692-8822 ; 0000-0003-3306-3545 ; 0000-0001-9340-4474 ; 0000-0002-5034-7438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-024-10135-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-024-10135-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pinho, Flávio Augusto Xavier Carneiro</creatorcontrib><creatorcontrib>Amabili, Marco</creatorcontrib><creatorcontrib>Del Prado, Zenón José Guzmán Nuñez</creatorcontrib><creatorcontrib>da Silva, Frederico Martins Alves</creatorcontrib><title>Nonlinear forced vibration analysis of doubly curved shells via the parameterization method for invariant manifold</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this work, the nonlinear forced vibrations of doubly curved shells are studied. For this, the Forced Resonance Curves of four different shells were determined: a shallow cylindrical panel, a shallow spherical panel, a non-shallow spherical panel, and a hyperbolic paraboloid. To model the shells, the Koiter’s nonlinear shell theory, for both shallow and non-shallow shells, was applied. The forced resonance curves were determined using an adaptive harmonic balance method and through a reduced-order model (ROM) via parameterization method for invariant manifolds. The findings of this study reveal the complex dynamic behavior exhibited by doubly curved shells, with various types of bifurcations such as Saddle–Node, Neimark–Sacker, and Period Doubling bifurcations. Thanks to the general treatment of the forcing term implemented in the parameterization method, the results highlight how complex high-order resonances can be retrieved by the ROM, up to a comfortable range of vibration and forcing amplitudes tested. Finally, it clearly demonstrates how the Nonlinear Normal Modes as invariant manifolds provide accurate and efficient ROMs for nonlinear vibrations of shells.</description><subject>Automotive Engineering</subject><subject>Bifurcations</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Curved panels</subject><subject>Cylindrical shells</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Forced vibration</subject><subject>Graphene</subject><subject>Harmonic balance method</subject><subject>Invariants</subject><subject>Manifolds</subject><subject>Mechanical Engineering</subject><subject>Parameterization</subject><subject>Period doubling</subject><subject>Reduced order models</subject><subject>Resonance</subject><subject>Shallow shells</subject><subject>Shell theory</subject><subject>Spherical shells</subject><subject>Vibration</subject><subject>Vibration analysis</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKeA59VJsmm6Ryl-QdGLQm8h2Z3YlO2mJruF-utNXcGbpzDkeV5mXkKuGNwwAHWbGAPFCuBlwYAJWagjMmFSiYJPq-UxmUCVv6CC5Sk5S2kNAILDbELiS-ha36GJ1IVYY0N33kbT-9BR05l2n3yiwdEmDLbd03qIu8ykFbZtyqih_Qrp1kSzwR6j_xrNPKxCc0ikvtuZ6E3X043pvAttc0FOnGkTXv6-5-T94f5t_lQsXh-f53eLouYAfeGcqhxM0eZFWePKqiq5rQSThjksnaz41CqDyloUaB3KusFaSZziDI20pTgn12PuNobPAVOv12GI-aakBWOSC1UymSk-UnUMKUV0ehv9xsS9ZqAP3eqxW5271T_dapUlMUopw90Hxr_of6xvU4KAIQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Pinho, Flávio Augusto Xavier Carneiro</creator><creator>Amabili, Marco</creator><creator>Del Prado, Zenón José Guzmán Nuñez</creator><creator>da Silva, Frederico Martins Alves</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0692-8822</orcidid><orcidid>https://orcid.org/0000-0003-3306-3545</orcidid><orcidid>https://orcid.org/0000-0001-9340-4474</orcidid><orcidid>https://orcid.org/0000-0002-5034-7438</orcidid></search><sort><creationdate>20241201</creationdate><title>Nonlinear forced vibration analysis of doubly curved shells via the parameterization method for invariant manifold</title><author>Pinho, Flávio Augusto Xavier Carneiro ; Amabili, Marco ; Del Prado, Zenón José Guzmán Nuñez ; da Silva, Frederico Martins Alves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-ff79f06eb3201df49942b9315a1fe4f5926b7ae7bbe3ebfe5cdec75e6e8ea5b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automotive Engineering</topic><topic>Bifurcations</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Curved panels</topic><topic>Cylindrical shells</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Forced vibration</topic><topic>Graphene</topic><topic>Harmonic balance method</topic><topic>Invariants</topic><topic>Manifolds</topic><topic>Mechanical Engineering</topic><topic>Parameterization</topic><topic>Period doubling</topic><topic>Reduced order models</topic><topic>Resonance</topic><topic>Shallow shells</topic><topic>Shell theory</topic><topic>Spherical shells</topic><topic>Vibration</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinho, Flávio Augusto Xavier Carneiro</creatorcontrib><creatorcontrib>Amabili, Marco</creatorcontrib><creatorcontrib>Del Prado, Zenón José Guzmán Nuñez</creatorcontrib><creatorcontrib>da Silva, Frederico Martins Alves</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinho, Flávio Augusto Xavier Carneiro</au><au>Amabili, Marco</au><au>Del Prado, Zenón José Guzmán Nuñez</au><au>da Silva, Frederico Martins Alves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear forced vibration analysis of doubly curved shells via the parameterization method for invariant manifold</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>112</volume><issue>23</issue><spage>20677</spage><epage>20701</epage><pages>20677-20701</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this work, the nonlinear forced vibrations of doubly curved shells are studied. For this, the Forced Resonance Curves of four different shells were determined: a shallow cylindrical panel, a shallow spherical panel, a non-shallow spherical panel, and a hyperbolic paraboloid. To model the shells, the Koiter’s nonlinear shell theory, for both shallow and non-shallow shells, was applied. The forced resonance curves were determined using an adaptive harmonic balance method and through a reduced-order model (ROM) via parameterization method for invariant manifolds. The findings of this study reveal the complex dynamic behavior exhibited by doubly curved shells, with various types of bifurcations such as Saddle–Node, Neimark–Sacker, and Period Doubling bifurcations. Thanks to the general treatment of the forcing term implemented in the parameterization method, the results highlight how complex high-order resonances can be retrieved by the ROM, up to a comfortable range of vibration and forcing amplitudes tested. Finally, it clearly demonstrates how the Nonlinear Normal Modes as invariant manifolds provide accurate and efficient ROMs for nonlinear vibrations of shells.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-024-10135-7</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-0692-8822</orcidid><orcidid>https://orcid.org/0000-0003-3306-3545</orcidid><orcidid>https://orcid.org/0000-0001-9340-4474</orcidid><orcidid>https://orcid.org/0000-0002-5034-7438</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2024-12, Vol.112 (23), p.20677-20701
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_3115237415
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Bifurcations
Classical Mechanics
Control
Curved panels
Cylindrical shells
Dynamical Systems
Engineering
Forced vibration
Graphene
Harmonic balance method
Invariants
Manifolds
Mechanical Engineering
Parameterization
Period doubling
Reduced order models
Resonance
Shallow shells
Shell theory
Spherical shells
Vibration
Vibration analysis
title Nonlinear forced vibration analysis of doubly curved shells via the parameterization method for invariant manifold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20forced%20vibration%20analysis%20of%20doubly%20curved%20shells%20via%20the%20parameterization%20method%20for%20invariant%20manifold&rft.jtitle=Nonlinear%20dynamics&rft.au=Pinho,%20Fl%C3%A1vio%20Augusto%20Xavier%20Carneiro&rft.date=2024-12-01&rft.volume=112&rft.issue=23&rft.spage=20677&rft.epage=20701&rft.pages=20677-20701&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-10135-7&rft_dat=%3Cproquest_cross%3E3115237415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115237415&rft_id=info:pmid/&rfr_iscdi=true