Nonlinear forced vibration analysis of doubly curved shells via the parameterization method for invariant manifold
In this work, the nonlinear forced vibrations of doubly curved shells are studied. For this, the Forced Resonance Curves of four different shells were determined: a shallow cylindrical panel, a shallow spherical panel, a non-shallow spherical panel, and a hyperbolic paraboloid. To model the shells,...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2024-12, Vol.112 (23), p.20677-20701 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20701 |
---|---|
container_issue | 23 |
container_start_page | 20677 |
container_title | Nonlinear dynamics |
container_volume | 112 |
creator | Pinho, Flávio Augusto Xavier Carneiro Amabili, Marco Del Prado, Zenón José Guzmán Nuñez da Silva, Frederico Martins Alves |
description | In this work, the nonlinear forced vibrations of doubly curved shells are studied. For this, the Forced Resonance Curves of four different shells were determined: a shallow cylindrical panel, a shallow spherical panel, a non-shallow spherical panel, and a hyperbolic paraboloid. To model the shells, the Koiter’s nonlinear shell theory, for both shallow and non-shallow shells, was applied. The forced resonance curves were determined using an adaptive harmonic balance method and through a reduced-order model (ROM) via parameterization method for invariant manifolds. The findings of this study reveal the complex dynamic behavior exhibited by doubly curved shells, with various types of bifurcations such as Saddle–Node, Neimark–Sacker, and Period Doubling bifurcations. Thanks to the general treatment of the forcing term implemented in the parameterization method, the results highlight how complex high-order resonances can be retrieved by the ROM, up to a comfortable range of vibration and forcing amplitudes tested. Finally, it clearly demonstrates how the Nonlinear Normal Modes as invariant manifolds provide accurate and efficient ROMs for nonlinear vibrations of shells. |
doi_str_mv | 10.1007/s11071-024-10135-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3115237415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115237415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-ff79f06eb3201df49942b9315a1fe4f5926b7ae7bbe3ebfe5cdec75e6e8ea5b43</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKeA59VJsmm6Ryl-QdGLQm8h2Z3YlO2mJruF-utNXcGbpzDkeV5mXkKuGNwwAHWbGAPFCuBlwYAJWagjMmFSiYJPq-UxmUCVv6CC5Sk5S2kNAILDbELiS-ha36GJ1IVYY0N33kbT-9BR05l2n3yiwdEmDLbd03qIu8ykFbZtyqih_Qrp1kSzwR6j_xrNPKxCc0ikvtuZ6E3X043pvAttc0FOnGkTXv6-5-T94f5t_lQsXh-f53eLouYAfeGcqhxM0eZFWePKqiq5rQSThjksnaz41CqDyloUaB3KusFaSZziDI20pTgn12PuNobPAVOv12GI-aakBWOSC1UymSk-UnUMKUV0ehv9xsS9ZqAP3eqxW5271T_dapUlMUopw90Hxr_of6xvU4KAIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115237415</pqid></control><display><type>article</type><title>Nonlinear forced vibration analysis of doubly curved shells via the parameterization method for invariant manifold</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pinho, Flávio Augusto Xavier Carneiro ; Amabili, Marco ; Del Prado, Zenón José Guzmán Nuñez ; da Silva, Frederico Martins Alves</creator><creatorcontrib>Pinho, Flávio Augusto Xavier Carneiro ; Amabili, Marco ; Del Prado, Zenón José Guzmán Nuñez ; da Silva, Frederico Martins Alves</creatorcontrib><description>In this work, the nonlinear forced vibrations of doubly curved shells are studied. For this, the Forced Resonance Curves of four different shells were determined: a shallow cylindrical panel, a shallow spherical panel, a non-shallow spherical panel, and a hyperbolic paraboloid. To model the shells, the Koiter’s nonlinear shell theory, for both shallow and non-shallow shells, was applied. The forced resonance curves were determined using an adaptive harmonic balance method and through a reduced-order model (ROM) via parameterization method for invariant manifolds. The findings of this study reveal the complex dynamic behavior exhibited by doubly curved shells, with various types of bifurcations such as Saddle–Node, Neimark–Sacker, and Period Doubling bifurcations. Thanks to the general treatment of the forcing term implemented in the parameterization method, the results highlight how complex high-order resonances can be retrieved by the ROM, up to a comfortable range of vibration and forcing amplitudes tested. Finally, it clearly demonstrates how the Nonlinear Normal Modes as invariant manifolds provide accurate and efficient ROMs for nonlinear vibrations of shells.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-10135-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Bifurcations ; Classical Mechanics ; Control ; Curved panels ; Cylindrical shells ; Dynamical Systems ; Engineering ; Forced vibration ; Graphene ; Harmonic balance method ; Invariants ; Manifolds ; Mechanical Engineering ; Parameterization ; Period doubling ; Reduced order models ; Resonance ; Shallow shells ; Shell theory ; Spherical shells ; Vibration ; Vibration analysis</subject><ispartof>Nonlinear dynamics, 2024-12, Vol.112 (23), p.20677-20701</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-ff79f06eb3201df49942b9315a1fe4f5926b7ae7bbe3ebfe5cdec75e6e8ea5b43</cites><orcidid>0000-0003-0692-8822 ; 0000-0003-3306-3545 ; 0000-0001-9340-4474 ; 0000-0002-5034-7438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-024-10135-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-024-10135-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pinho, Flávio Augusto Xavier Carneiro</creatorcontrib><creatorcontrib>Amabili, Marco</creatorcontrib><creatorcontrib>Del Prado, Zenón José Guzmán Nuñez</creatorcontrib><creatorcontrib>da Silva, Frederico Martins Alves</creatorcontrib><title>Nonlinear forced vibration analysis of doubly curved shells via the parameterization method for invariant manifold</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this work, the nonlinear forced vibrations of doubly curved shells are studied. For this, the Forced Resonance Curves of four different shells were determined: a shallow cylindrical panel, a shallow spherical panel, a non-shallow spherical panel, and a hyperbolic paraboloid. To model the shells, the Koiter’s nonlinear shell theory, for both shallow and non-shallow shells, was applied. The forced resonance curves were determined using an adaptive harmonic balance method and through a reduced-order model (ROM) via parameterization method for invariant manifolds. The findings of this study reveal the complex dynamic behavior exhibited by doubly curved shells, with various types of bifurcations such as Saddle–Node, Neimark–Sacker, and Period Doubling bifurcations. Thanks to the general treatment of the forcing term implemented in the parameterization method, the results highlight how complex high-order resonances can be retrieved by the ROM, up to a comfortable range of vibration and forcing amplitudes tested. Finally, it clearly demonstrates how the Nonlinear Normal Modes as invariant manifolds provide accurate and efficient ROMs for nonlinear vibrations of shells.</description><subject>Automotive Engineering</subject><subject>Bifurcations</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Curved panels</subject><subject>Cylindrical shells</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Forced vibration</subject><subject>Graphene</subject><subject>Harmonic balance method</subject><subject>Invariants</subject><subject>Manifolds</subject><subject>Mechanical Engineering</subject><subject>Parameterization</subject><subject>Period doubling</subject><subject>Reduced order models</subject><subject>Resonance</subject><subject>Shallow shells</subject><subject>Shell theory</subject><subject>Spherical shells</subject><subject>Vibration</subject><subject>Vibration analysis</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKeA59VJsmm6Ryl-QdGLQm8h2Z3YlO2mJruF-utNXcGbpzDkeV5mXkKuGNwwAHWbGAPFCuBlwYAJWagjMmFSiYJPq-UxmUCVv6CC5Sk5S2kNAILDbELiS-ha36GJ1IVYY0N33kbT-9BR05l2n3yiwdEmDLbd03qIu8ykFbZtyqih_Qrp1kSzwR6j_xrNPKxCc0ikvtuZ6E3X043pvAttc0FOnGkTXv6-5-T94f5t_lQsXh-f53eLouYAfeGcqhxM0eZFWePKqiq5rQSThjksnaz41CqDyloUaB3KusFaSZziDI20pTgn12PuNobPAVOv12GI-aakBWOSC1UymSk-UnUMKUV0ehv9xsS9ZqAP3eqxW5271T_dapUlMUopw90Hxr_of6xvU4KAIQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Pinho, Flávio Augusto Xavier Carneiro</creator><creator>Amabili, Marco</creator><creator>Del Prado, Zenón José Guzmán Nuñez</creator><creator>da Silva, Frederico Martins Alves</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0692-8822</orcidid><orcidid>https://orcid.org/0000-0003-3306-3545</orcidid><orcidid>https://orcid.org/0000-0001-9340-4474</orcidid><orcidid>https://orcid.org/0000-0002-5034-7438</orcidid></search><sort><creationdate>20241201</creationdate><title>Nonlinear forced vibration analysis of doubly curved shells via the parameterization method for invariant manifold</title><author>Pinho, Flávio Augusto Xavier Carneiro ; Amabili, Marco ; Del Prado, Zenón José Guzmán Nuñez ; da Silva, Frederico Martins Alves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-ff79f06eb3201df49942b9315a1fe4f5926b7ae7bbe3ebfe5cdec75e6e8ea5b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automotive Engineering</topic><topic>Bifurcations</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Curved panels</topic><topic>Cylindrical shells</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Forced vibration</topic><topic>Graphene</topic><topic>Harmonic balance method</topic><topic>Invariants</topic><topic>Manifolds</topic><topic>Mechanical Engineering</topic><topic>Parameterization</topic><topic>Period doubling</topic><topic>Reduced order models</topic><topic>Resonance</topic><topic>Shallow shells</topic><topic>Shell theory</topic><topic>Spherical shells</topic><topic>Vibration</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinho, Flávio Augusto Xavier Carneiro</creatorcontrib><creatorcontrib>Amabili, Marco</creatorcontrib><creatorcontrib>Del Prado, Zenón José Guzmán Nuñez</creatorcontrib><creatorcontrib>da Silva, Frederico Martins Alves</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinho, Flávio Augusto Xavier Carneiro</au><au>Amabili, Marco</au><au>Del Prado, Zenón José Guzmán Nuñez</au><au>da Silva, Frederico Martins Alves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear forced vibration analysis of doubly curved shells via the parameterization method for invariant manifold</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>112</volume><issue>23</issue><spage>20677</spage><epage>20701</epage><pages>20677-20701</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this work, the nonlinear forced vibrations of doubly curved shells are studied. For this, the Forced Resonance Curves of four different shells were determined: a shallow cylindrical panel, a shallow spherical panel, a non-shallow spherical panel, and a hyperbolic paraboloid. To model the shells, the Koiter’s nonlinear shell theory, for both shallow and non-shallow shells, was applied. The forced resonance curves were determined using an adaptive harmonic balance method and through a reduced-order model (ROM) via parameterization method for invariant manifolds. The findings of this study reveal the complex dynamic behavior exhibited by doubly curved shells, with various types of bifurcations such as Saddle–Node, Neimark–Sacker, and Period Doubling bifurcations. Thanks to the general treatment of the forcing term implemented in the parameterization method, the results highlight how complex high-order resonances can be retrieved by the ROM, up to a comfortable range of vibration and forcing amplitudes tested. Finally, it clearly demonstrates how the Nonlinear Normal Modes as invariant manifolds provide accurate and efficient ROMs for nonlinear vibrations of shells.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-024-10135-7</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-0692-8822</orcidid><orcidid>https://orcid.org/0000-0003-3306-3545</orcidid><orcidid>https://orcid.org/0000-0001-9340-4474</orcidid><orcidid>https://orcid.org/0000-0002-5034-7438</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2024-12, Vol.112 (23), p.20677-20701 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_3115237415 |
source | SpringerLink Journals - AutoHoldings |
subjects | Automotive Engineering Bifurcations Classical Mechanics Control Curved panels Cylindrical shells Dynamical Systems Engineering Forced vibration Graphene Harmonic balance method Invariants Manifolds Mechanical Engineering Parameterization Period doubling Reduced order models Resonance Shallow shells Shell theory Spherical shells Vibration Vibration analysis |
title | Nonlinear forced vibration analysis of doubly curved shells via the parameterization method for invariant manifold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20forced%20vibration%20analysis%20of%20doubly%20curved%20shells%20via%20the%20parameterization%20method%20for%20invariant%20manifold&rft.jtitle=Nonlinear%20dynamics&rft.au=Pinho,%20Fl%C3%A1vio%20Augusto%20Xavier%20Carneiro&rft.date=2024-12-01&rft.volume=112&rft.issue=23&rft.spage=20677&rft.epage=20701&rft.pages=20677-20701&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-10135-7&rft_dat=%3Cproquest_cross%3E3115237415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115237415&rft_id=info:pmid/&rfr_iscdi=true |