Study of Diffusion in Sodium Silicate Glass Using Molecular Dynamics Simulation
Using molecular dynamics simulation on sodium silicate glass we have investigated the sodium motion through Voronoi Si and O polyhedrons. The result shows that Na atoms are almost not present in Si polyhedrons, and sodium number density in non-bridging oxygen and free oxygen polyhedrons is larger by...
Gespeichert in:
Veröffentlicht in: | SILICON 2024-10, Vol.16 (15), p.5571-5581 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5581 |
---|---|
container_issue | 15 |
container_start_page | 5571 |
container_title | SILICON |
container_volume | 16 |
creator | Nhan, N. T. Lien, P. T. Kien, P. H. San, L. T. Hung, P. K. |
description | Using molecular dynamics simulation on sodium silicate glass we have investigated the sodium motion through Voronoi Si and O polyhedrons. The result shows that Na atoms are almost not present in Si polyhedrons, and sodium number density in non-bridging oxygen and free oxygen polyhedrons is larger by 2.5 – 10.5 times than in bridging oxygen polyhedrons. The volume of space occupied by non-bridging oxygen and free oxygen polyhedrons varies from 25 to 66% of total volume of system. The simulation reveals that Na atoms move frequently along non-bridging oxygen and free oxygen polyhedrons and rarely along bridging oxygen polyhedrons. Moreover, they often leave and comeback to starting polyhedron. Such movement is responsible for decreasing the correlation factor F. The system contains unconnected sodium mobile regions which consists of polyhedrons connected with each other by preferential moving paths. With decreasing SiO
2
content the system possesses long diffusion pathways. We have established the expression for sodium diffusion constant D via the rate of hops ξ, average square distance per visiting polyhedron
d
2
and factor F. We find that as the temperature or SiO
2
content changes, the variation of F is significantly larger either than ξ or
d
2
. Moreover, the dependence of D on F is found linear. |
doi_str_mv | 10.1007/s12633-024-03095-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3115227179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115227179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-43eb20097c50a806cbfee6547e3453b85a7990b4722cf9bd0bbd3446bba411ec3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWLRfwFPAczR_N7tHabUKlR5qwVtIstmSsrupye6h397oit6cywzDe2-GHwA3BN8RjOV9IrRgDGHKEWa4EkicgRkpZYGqipTnvzN-vwTzlA44F6OyLKoZ2GyHsT7B0MClb5ox-dBD38NtqP3Ywa1vvdWDg6tWpwR3yfd7-BpaZ8dWR7g89brzNmVdlxdDNl-Di0a3yc1_-hXYPT2-LZ7RerN6WTyskaUYD4gzZ_JQSSuwLnFhTeNcIbh0jAtmSqFl_tdwSaltKlNjY2rGeWGM5oQ4y67A7ZR7jOFjdGlQhzDGPp9UjBBBqSSyyio6qWwMKUXXqGP0nY4nRbD6YqcmdiqzU9_slMgmNplSFvd7F_-i_3F9AmescSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115227179</pqid></control><display><type>article</type><title>Study of Diffusion in Sodium Silicate Glass Using Molecular Dynamics Simulation</title><source>SpringerLink Journals</source><creator>Nhan, N. T. ; Lien, P. T. ; Kien, P. H. ; San, L. T. ; Hung, P. K.</creator><creatorcontrib>Nhan, N. T. ; Lien, P. T. ; Kien, P. H. ; San, L. T. ; Hung, P. K.</creatorcontrib><description>Using molecular dynamics simulation on sodium silicate glass we have investigated the sodium motion through Voronoi Si and O polyhedrons. The result shows that Na atoms are almost not present in Si polyhedrons, and sodium number density in non-bridging oxygen and free oxygen polyhedrons is larger by 2.5 – 10.5 times than in bridging oxygen polyhedrons. The volume of space occupied by non-bridging oxygen and free oxygen polyhedrons varies from 25 to 66% of total volume of system. The simulation reveals that Na atoms move frequently along non-bridging oxygen and free oxygen polyhedrons and rarely along bridging oxygen polyhedrons. Moreover, they often leave and comeback to starting polyhedron. Such movement is responsible for decreasing the correlation factor F. The system contains unconnected sodium mobile regions which consists of polyhedrons connected with each other by preferential moving paths. With decreasing SiO
2
content the system possesses long diffusion pathways. We have established the expression for sodium diffusion constant D via the rate of hops ξ, average square distance per visiting polyhedron
d
2
and factor F. We find that as the temperature or SiO
2
content changes, the variation of F is significantly larger either than ξ or
d
2
. Moreover, the dependence of D on F is found linear.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-024-03095-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atomic properties ; Chemistry ; Chemistry and Materials Science ; Correlation coefficients ; Diffusion rate ; Environmental Chemistry ; Inorganic Chemistry ; Lasers ; Materials Science ; Molecular dynamics ; Movement ; Optical Devices ; Optics ; Oxygen ; Photonics ; Polyhedra ; Polymer Sciences ; Silicon dioxide ; Simulation ; Sodium ; Sodium diffusion ; Sodium silicates</subject><ispartof>SILICON, 2024-10, Vol.16 (15), p.5571-5581</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-43eb20097c50a806cbfee6547e3453b85a7990b4722cf9bd0bbd3446bba411ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12633-024-03095-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12633-024-03095-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nhan, N. T.</creatorcontrib><creatorcontrib>Lien, P. T.</creatorcontrib><creatorcontrib>Kien, P. H.</creatorcontrib><creatorcontrib>San, L. T.</creatorcontrib><creatorcontrib>Hung, P. K.</creatorcontrib><title>Study of Diffusion in Sodium Silicate Glass Using Molecular Dynamics Simulation</title><title>SILICON</title><addtitle>Silicon</addtitle><description>Using molecular dynamics simulation on sodium silicate glass we have investigated the sodium motion through Voronoi Si and O polyhedrons. The result shows that Na atoms are almost not present in Si polyhedrons, and sodium number density in non-bridging oxygen and free oxygen polyhedrons is larger by 2.5 – 10.5 times than in bridging oxygen polyhedrons. The volume of space occupied by non-bridging oxygen and free oxygen polyhedrons varies from 25 to 66% of total volume of system. The simulation reveals that Na atoms move frequently along non-bridging oxygen and free oxygen polyhedrons and rarely along bridging oxygen polyhedrons. Moreover, they often leave and comeback to starting polyhedron. Such movement is responsible for decreasing the correlation factor F. The system contains unconnected sodium mobile regions which consists of polyhedrons connected with each other by preferential moving paths. With decreasing SiO
2
content the system possesses long diffusion pathways. We have established the expression for sodium diffusion constant D via the rate of hops ξ, average square distance per visiting polyhedron
d
2
and factor F. We find that as the temperature or SiO
2
content changes, the variation of F is significantly larger either than ξ or
d
2
. Moreover, the dependence of D on F is found linear.</description><subject>Atomic properties</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Correlation coefficients</subject><subject>Diffusion rate</subject><subject>Environmental Chemistry</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Molecular dynamics</subject><subject>Movement</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Oxygen</subject><subject>Photonics</subject><subject>Polyhedra</subject><subject>Polymer Sciences</subject><subject>Silicon dioxide</subject><subject>Simulation</subject><subject>Sodium</subject><subject>Sodium diffusion</subject><subject>Sodium silicates</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWLRfwFPAczR_N7tHabUKlR5qwVtIstmSsrupye6h397oit6cywzDe2-GHwA3BN8RjOV9IrRgDGHKEWa4EkicgRkpZYGqipTnvzN-vwTzlA44F6OyLKoZ2GyHsT7B0MClb5ox-dBD38NtqP3Ywa1vvdWDg6tWpwR3yfd7-BpaZ8dWR7g89brzNmVdlxdDNl-Di0a3yc1_-hXYPT2-LZ7RerN6WTyskaUYD4gzZ_JQSSuwLnFhTeNcIbh0jAtmSqFl_tdwSaltKlNjY2rGeWGM5oQ4y67A7ZR7jOFjdGlQhzDGPp9UjBBBqSSyyio6qWwMKUXXqGP0nY4nRbD6YqcmdiqzU9_slMgmNplSFvd7F_-i_3F9AmescSk</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Nhan, N. T.</creator><creator>Lien, P. T.</creator><creator>Kien, P. H.</creator><creator>San, L. T.</creator><creator>Hung, P. K.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>Study of Diffusion in Sodium Silicate Glass Using Molecular Dynamics Simulation</title><author>Nhan, N. T. ; Lien, P. T. ; Kien, P. H. ; San, L. T. ; Hung, P. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-43eb20097c50a806cbfee6547e3453b85a7990b4722cf9bd0bbd3446bba411ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic properties</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Correlation coefficients</topic><topic>Diffusion rate</topic><topic>Environmental Chemistry</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Molecular dynamics</topic><topic>Movement</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Oxygen</topic><topic>Photonics</topic><topic>Polyhedra</topic><topic>Polymer Sciences</topic><topic>Silicon dioxide</topic><topic>Simulation</topic><topic>Sodium</topic><topic>Sodium diffusion</topic><topic>Sodium silicates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nhan, N. T.</creatorcontrib><creatorcontrib>Lien, P. T.</creatorcontrib><creatorcontrib>Kien, P. H.</creatorcontrib><creatorcontrib>San, L. T.</creatorcontrib><creatorcontrib>Hung, P. K.</creatorcontrib><collection>CrossRef</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nhan, N. T.</au><au>Lien, P. T.</au><au>Kien, P. H.</au><au>San, L. T.</au><au>Hung, P. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Diffusion in Sodium Silicate Glass Using Molecular Dynamics Simulation</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>16</volume><issue>15</issue><spage>5571</spage><epage>5581</epage><pages>5571-5581</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>Using molecular dynamics simulation on sodium silicate glass we have investigated the sodium motion through Voronoi Si and O polyhedrons. The result shows that Na atoms are almost not present in Si polyhedrons, and sodium number density in non-bridging oxygen and free oxygen polyhedrons is larger by 2.5 – 10.5 times than in bridging oxygen polyhedrons. The volume of space occupied by non-bridging oxygen and free oxygen polyhedrons varies from 25 to 66% of total volume of system. The simulation reveals that Na atoms move frequently along non-bridging oxygen and free oxygen polyhedrons and rarely along bridging oxygen polyhedrons. Moreover, they often leave and comeback to starting polyhedron. Such movement is responsible for decreasing the correlation factor F. The system contains unconnected sodium mobile regions which consists of polyhedrons connected with each other by preferential moving paths. With decreasing SiO
2
content the system possesses long diffusion pathways. We have established the expression for sodium diffusion constant D via the rate of hops ξ, average square distance per visiting polyhedron
d
2
and factor F. We find that as the temperature or SiO
2
content changes, the variation of F is significantly larger either than ξ or
d
2
. Moreover, the dependence of D on F is found linear.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-024-03095-5</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1876-990X |
ispartof | SILICON, 2024-10, Vol.16 (15), p.5571-5581 |
issn | 1876-990X 1876-9918 |
language | eng |
recordid | cdi_proquest_journals_3115227179 |
source | SpringerLink Journals |
subjects | Atomic properties Chemistry Chemistry and Materials Science Correlation coefficients Diffusion rate Environmental Chemistry Inorganic Chemistry Lasers Materials Science Molecular dynamics Movement Optical Devices Optics Oxygen Photonics Polyhedra Polymer Sciences Silicon dioxide Simulation Sodium Sodium diffusion Sodium silicates |
title | Study of Diffusion in Sodium Silicate Glass Using Molecular Dynamics Simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Diffusion%20in%20Sodium%20Silicate%20Glass%20Using%20Molecular%20Dynamics%20Simulation&rft.jtitle=SILICON&rft.au=Nhan,%20N.%20T.&rft.date=2024-10-01&rft.volume=16&rft.issue=15&rft.spage=5571&rft.epage=5581&rft.pages=5571-5581&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-024-03095-5&rft_dat=%3Cproquest_cross%3E3115227179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115227179&rft_id=info:pmid/&rfr_iscdi=true |