Study of Diffusion in Sodium Silicate Glass Using Molecular Dynamics Simulation

Using molecular dynamics simulation on sodium silicate glass we have investigated the sodium motion through Voronoi Si and O polyhedrons. The result shows that Na atoms are almost not present in Si polyhedrons, and sodium number density in non-bridging oxygen and free oxygen polyhedrons is larger by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SILICON 2024-10, Vol.16 (15), p.5571-5581
Hauptverfasser: Nhan, N. T., Lien, P. T., Kien, P. H., San, L. T., Hung, P. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5581
container_issue 15
container_start_page 5571
container_title SILICON
container_volume 16
creator Nhan, N. T.
Lien, P. T.
Kien, P. H.
San, L. T.
Hung, P. K.
description Using molecular dynamics simulation on sodium silicate glass we have investigated the sodium motion through Voronoi Si and O polyhedrons. The result shows that Na atoms are almost not present in Si polyhedrons, and sodium number density in non-bridging oxygen and free oxygen polyhedrons is larger by 2.5 – 10.5 times than in bridging oxygen polyhedrons. The volume of space occupied by non-bridging oxygen and free oxygen polyhedrons varies from 25 to 66% of total volume of system. The simulation reveals that Na atoms move frequently along non-bridging oxygen and free oxygen polyhedrons and rarely along bridging oxygen polyhedrons. Moreover, they often leave and comeback to starting polyhedron. Such movement is responsible for decreasing the correlation factor F. The system contains unconnected sodium mobile regions which consists of polyhedrons connected with each other by preferential moving paths. With decreasing SiO 2 content the system possesses long diffusion pathways. We have established the expression for sodium diffusion constant D via the rate of hops ξ, average square distance per visiting polyhedron d 2 and factor F. We find that as the temperature or SiO 2 content changes, the variation of F is significantly larger either than ξ or d 2 . Moreover, the dependence of D on F is found linear.
doi_str_mv 10.1007/s12633-024-03095-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3115227179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115227179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-43eb20097c50a806cbfee6547e3453b85a7990b4722cf9bd0bbd3446bba411ec3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWLRfwFPAczR_N7tHabUKlR5qwVtIstmSsrupye6h397oit6cywzDe2-GHwA3BN8RjOV9IrRgDGHKEWa4EkicgRkpZYGqipTnvzN-vwTzlA44F6OyLKoZ2GyHsT7B0MClb5ox-dBD38NtqP3Ywa1vvdWDg6tWpwR3yfd7-BpaZ8dWR7g89brzNmVdlxdDNl-Di0a3yc1_-hXYPT2-LZ7RerN6WTyskaUYD4gzZ_JQSSuwLnFhTeNcIbh0jAtmSqFl_tdwSaltKlNjY2rGeWGM5oQ4y67A7ZR7jOFjdGlQhzDGPp9UjBBBqSSyyio6qWwMKUXXqGP0nY4nRbD6YqcmdiqzU9_slMgmNplSFvd7F_-i_3F9AmescSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115227179</pqid></control><display><type>article</type><title>Study of Diffusion in Sodium Silicate Glass Using Molecular Dynamics Simulation</title><source>SpringerLink Journals</source><creator>Nhan, N. T. ; Lien, P. T. ; Kien, P. H. ; San, L. T. ; Hung, P. K.</creator><creatorcontrib>Nhan, N. T. ; Lien, P. T. ; Kien, P. H. ; San, L. T. ; Hung, P. K.</creatorcontrib><description>Using molecular dynamics simulation on sodium silicate glass we have investigated the sodium motion through Voronoi Si and O polyhedrons. The result shows that Na atoms are almost not present in Si polyhedrons, and sodium number density in non-bridging oxygen and free oxygen polyhedrons is larger by 2.5 – 10.5 times than in bridging oxygen polyhedrons. The volume of space occupied by non-bridging oxygen and free oxygen polyhedrons varies from 25 to 66% of total volume of system. The simulation reveals that Na atoms move frequently along non-bridging oxygen and free oxygen polyhedrons and rarely along bridging oxygen polyhedrons. Moreover, they often leave and comeback to starting polyhedron. Such movement is responsible for decreasing the correlation factor F. The system contains unconnected sodium mobile regions which consists of polyhedrons connected with each other by preferential moving paths. With decreasing SiO 2 content the system possesses long diffusion pathways. We have established the expression for sodium diffusion constant D via the rate of hops ξ, average square distance per visiting polyhedron d 2 and factor F. We find that as the temperature or SiO 2 content changes, the variation of F is significantly larger either than ξ or d 2 . Moreover, the dependence of D on F is found linear.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-024-03095-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atomic properties ; Chemistry ; Chemistry and Materials Science ; Correlation coefficients ; Diffusion rate ; Environmental Chemistry ; Inorganic Chemistry ; Lasers ; Materials Science ; Molecular dynamics ; Movement ; Optical Devices ; Optics ; Oxygen ; Photonics ; Polyhedra ; Polymer Sciences ; Silicon dioxide ; Simulation ; Sodium ; Sodium diffusion ; Sodium silicates</subject><ispartof>SILICON, 2024-10, Vol.16 (15), p.5571-5581</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-43eb20097c50a806cbfee6547e3453b85a7990b4722cf9bd0bbd3446bba411ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12633-024-03095-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12633-024-03095-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nhan, N. T.</creatorcontrib><creatorcontrib>Lien, P. T.</creatorcontrib><creatorcontrib>Kien, P. H.</creatorcontrib><creatorcontrib>San, L. T.</creatorcontrib><creatorcontrib>Hung, P. K.</creatorcontrib><title>Study of Diffusion in Sodium Silicate Glass Using Molecular Dynamics Simulation</title><title>SILICON</title><addtitle>Silicon</addtitle><description>Using molecular dynamics simulation on sodium silicate glass we have investigated the sodium motion through Voronoi Si and O polyhedrons. The result shows that Na atoms are almost not present in Si polyhedrons, and sodium number density in non-bridging oxygen and free oxygen polyhedrons is larger by 2.5 – 10.5 times than in bridging oxygen polyhedrons. The volume of space occupied by non-bridging oxygen and free oxygen polyhedrons varies from 25 to 66% of total volume of system. The simulation reveals that Na atoms move frequently along non-bridging oxygen and free oxygen polyhedrons and rarely along bridging oxygen polyhedrons. Moreover, they often leave and comeback to starting polyhedron. Such movement is responsible for decreasing the correlation factor F. The system contains unconnected sodium mobile regions which consists of polyhedrons connected with each other by preferential moving paths. With decreasing SiO 2 content the system possesses long diffusion pathways. We have established the expression for sodium diffusion constant D via the rate of hops ξ, average square distance per visiting polyhedron d 2 and factor F. We find that as the temperature or SiO 2 content changes, the variation of F is significantly larger either than ξ or d 2 . Moreover, the dependence of D on F is found linear.</description><subject>Atomic properties</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Correlation coefficients</subject><subject>Diffusion rate</subject><subject>Environmental Chemistry</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Molecular dynamics</subject><subject>Movement</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Oxygen</subject><subject>Photonics</subject><subject>Polyhedra</subject><subject>Polymer Sciences</subject><subject>Silicon dioxide</subject><subject>Simulation</subject><subject>Sodium</subject><subject>Sodium diffusion</subject><subject>Sodium silicates</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWLRfwFPAczR_N7tHabUKlR5qwVtIstmSsrupye6h397oit6cywzDe2-GHwA3BN8RjOV9IrRgDGHKEWa4EkicgRkpZYGqipTnvzN-vwTzlA44F6OyLKoZ2GyHsT7B0MClb5ox-dBD38NtqP3Ywa1vvdWDg6tWpwR3yfd7-BpaZ8dWR7g89brzNmVdlxdDNl-Di0a3yc1_-hXYPT2-LZ7RerN6WTyskaUYD4gzZ_JQSSuwLnFhTeNcIbh0jAtmSqFl_tdwSaltKlNjY2rGeWGM5oQ4y67A7ZR7jOFjdGlQhzDGPp9UjBBBqSSyyio6qWwMKUXXqGP0nY4nRbD6YqcmdiqzU9_slMgmNplSFvd7F_-i_3F9AmescSk</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Nhan, N. T.</creator><creator>Lien, P. T.</creator><creator>Kien, P. H.</creator><creator>San, L. T.</creator><creator>Hung, P. K.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241001</creationdate><title>Study of Diffusion in Sodium Silicate Glass Using Molecular Dynamics Simulation</title><author>Nhan, N. T. ; Lien, P. T. ; Kien, P. H. ; San, L. T. ; Hung, P. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-43eb20097c50a806cbfee6547e3453b85a7990b4722cf9bd0bbd3446bba411ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic properties</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Correlation coefficients</topic><topic>Diffusion rate</topic><topic>Environmental Chemistry</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Molecular dynamics</topic><topic>Movement</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Oxygen</topic><topic>Photonics</topic><topic>Polyhedra</topic><topic>Polymer Sciences</topic><topic>Silicon dioxide</topic><topic>Simulation</topic><topic>Sodium</topic><topic>Sodium diffusion</topic><topic>Sodium silicates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nhan, N. T.</creatorcontrib><creatorcontrib>Lien, P. T.</creatorcontrib><creatorcontrib>Kien, P. H.</creatorcontrib><creatorcontrib>San, L. T.</creatorcontrib><creatorcontrib>Hung, P. K.</creatorcontrib><collection>CrossRef</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nhan, N. T.</au><au>Lien, P. T.</au><au>Kien, P. H.</au><au>San, L. T.</au><au>Hung, P. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Diffusion in Sodium Silicate Glass Using Molecular Dynamics Simulation</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>16</volume><issue>15</issue><spage>5571</spage><epage>5581</epage><pages>5571-5581</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>Using molecular dynamics simulation on sodium silicate glass we have investigated the sodium motion through Voronoi Si and O polyhedrons. The result shows that Na atoms are almost not present in Si polyhedrons, and sodium number density in non-bridging oxygen and free oxygen polyhedrons is larger by 2.5 – 10.5 times than in bridging oxygen polyhedrons. The volume of space occupied by non-bridging oxygen and free oxygen polyhedrons varies from 25 to 66% of total volume of system. The simulation reveals that Na atoms move frequently along non-bridging oxygen and free oxygen polyhedrons and rarely along bridging oxygen polyhedrons. Moreover, they often leave and comeback to starting polyhedron. Such movement is responsible for decreasing the correlation factor F. The system contains unconnected sodium mobile regions which consists of polyhedrons connected with each other by preferential moving paths. With decreasing SiO 2 content the system possesses long diffusion pathways. We have established the expression for sodium diffusion constant D via the rate of hops ξ, average square distance per visiting polyhedron d 2 and factor F. We find that as the temperature or SiO 2 content changes, the variation of F is significantly larger either than ξ or d 2 . Moreover, the dependence of D on F is found linear.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-024-03095-5</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1876-990X
ispartof SILICON, 2024-10, Vol.16 (15), p.5571-5581
issn 1876-990X
1876-9918
language eng
recordid cdi_proquest_journals_3115227179
source SpringerLink Journals
subjects Atomic properties
Chemistry
Chemistry and Materials Science
Correlation coefficients
Diffusion rate
Environmental Chemistry
Inorganic Chemistry
Lasers
Materials Science
Molecular dynamics
Movement
Optical Devices
Optics
Oxygen
Photonics
Polyhedra
Polymer Sciences
Silicon dioxide
Simulation
Sodium
Sodium diffusion
Sodium silicates
title Study of Diffusion in Sodium Silicate Glass Using Molecular Dynamics Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Diffusion%20in%20Sodium%20Silicate%20Glass%20Using%20Molecular%20Dynamics%20Simulation&rft.jtitle=SILICON&rft.au=Nhan,%20N.%20T.&rft.date=2024-10-01&rft.volume=16&rft.issue=15&rft.spage=5571&rft.epage=5581&rft.pages=5571-5581&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-024-03095-5&rft_dat=%3Cproquest_cross%3E3115227179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115227179&rft_id=info:pmid/&rfr_iscdi=true