Towards Interpreting Visual Information Processing in Vision-Language Models

Vision-Language Models (VLMs) are powerful tools for processing and understanding text and images. We study the processing of visual tokens in the language model component of LLaVA, a prominent VLM. Our approach focuses on analyzing the localization of object information, the evolution of visual tok...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Neo, Clement, Ong, Luke, Torr, Philip, Geva, Mor, Krueger, David, Barez, Fazl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Neo, Clement
Ong, Luke
Torr, Philip
Geva, Mor
Krueger, David
Barez, Fazl
description Vision-Language Models (VLMs) are powerful tools for processing and understanding text and images. We study the processing of visual tokens in the language model component of LLaVA, a prominent VLM. Our approach focuses on analyzing the localization of object information, the evolution of visual token representations across layers, and the mechanism of integrating visual information for predictions. Through ablation studies, we demonstrated that object identification accuracy drops by over 70\% when object-specific tokens are removed. We observed that visual token representations become increasingly interpretable in the vocabulary space across layers, suggesting an alignment with textual tokens corresponding to image content. Finally, we found that the model extracts object information from these refined representations at the last token position for prediction, mirroring the process in text-only language models for factual association tasks. These findings provide crucial insights into how VLMs process and integrate visual information, bridging the gap between our understanding of language and vision models, and paving the way for more interpretable and controllable multimodal systems.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3115225510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115225510</sourcerecordid><originalsourceid>FETCH-proquest_journals_31152255103</originalsourceid><addsrcrecordid>eNqNjssKwjAQRYMgWLT_EHBdyMOqe1EUKrgobiXYtKTUTJ1J8PdNwQ9wdeGcs7gzlimtZbHfKLVgOVEvhFDbnSpLnbGqho_BhvjFB4sj2uB8x--OohkSawFfJjjw_IbwtESTdX4KEiwq47toOsuv0NiBVmzemoFs_tslW5-O9eFcjAjvaCk8eojok3poKUuVLkih_6u-mnw93Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115225510</pqid></control><display><type>article</type><title>Towards Interpreting Visual Information Processing in Vision-Language Models</title><source>Free E- Journals</source><creator>Neo, Clement ; Ong, Luke ; Torr, Philip ; Geva, Mor ; Krueger, David ; Barez, Fazl</creator><creatorcontrib>Neo, Clement ; Ong, Luke ; Torr, Philip ; Geva, Mor ; Krueger, David ; Barez, Fazl</creatorcontrib><description>Vision-Language Models (VLMs) are powerful tools for processing and understanding text and images. We study the processing of visual tokens in the language model component of LLaVA, a prominent VLM. Our approach focuses on analyzing the localization of object information, the evolution of visual token representations across layers, and the mechanism of integrating visual information for predictions. Through ablation studies, we demonstrated that object identification accuracy drops by over 70\% when object-specific tokens are removed. We observed that visual token representations become increasingly interpretable in the vocabulary space across layers, suggesting an alignment with textual tokens corresponding to image content. Finally, we found that the model extracts object information from these refined representations at the last token position for prediction, mirroring the process in text-only language models for factual association tasks. These findings provide crucial insights into how VLMs process and integrate visual information, bridging the gap between our understanding of language and vision models, and paving the way for more interpretable and controllable multimodal systems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ablation ; Controllability ; Data processing ; Language ; Representations ; Vision ; Visual observation ; Visual tasks</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Neo, Clement</creatorcontrib><creatorcontrib>Ong, Luke</creatorcontrib><creatorcontrib>Torr, Philip</creatorcontrib><creatorcontrib>Geva, Mor</creatorcontrib><creatorcontrib>Krueger, David</creatorcontrib><creatorcontrib>Barez, Fazl</creatorcontrib><title>Towards Interpreting Visual Information Processing in Vision-Language Models</title><title>arXiv.org</title><description>Vision-Language Models (VLMs) are powerful tools for processing and understanding text and images. We study the processing of visual tokens in the language model component of LLaVA, a prominent VLM. Our approach focuses on analyzing the localization of object information, the evolution of visual token representations across layers, and the mechanism of integrating visual information for predictions. Through ablation studies, we demonstrated that object identification accuracy drops by over 70\% when object-specific tokens are removed. We observed that visual token representations become increasingly interpretable in the vocabulary space across layers, suggesting an alignment with textual tokens corresponding to image content. Finally, we found that the model extracts object information from these refined representations at the last token position for prediction, mirroring the process in text-only language models for factual association tasks. These findings provide crucial insights into how VLMs process and integrate visual information, bridging the gap between our understanding of language and vision models, and paving the way for more interpretable and controllable multimodal systems.</description><subject>Ablation</subject><subject>Controllability</subject><subject>Data processing</subject><subject>Language</subject><subject>Representations</subject><subject>Vision</subject><subject>Visual observation</subject><subject>Visual tasks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjssKwjAQRYMgWLT_EHBdyMOqe1EUKrgobiXYtKTUTJ1J8PdNwQ9wdeGcs7gzlimtZbHfKLVgOVEvhFDbnSpLnbGqho_BhvjFB4sj2uB8x--OohkSawFfJjjw_IbwtESTdX4KEiwq47toOsuv0NiBVmzemoFs_tslW5-O9eFcjAjvaCk8eojok3poKUuVLkih_6u-mnw93Q</recordid><startdate>20241009</startdate><enddate>20241009</enddate><creator>Neo, Clement</creator><creator>Ong, Luke</creator><creator>Torr, Philip</creator><creator>Geva, Mor</creator><creator>Krueger, David</creator><creator>Barez, Fazl</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241009</creationdate><title>Towards Interpreting Visual Information Processing in Vision-Language Models</title><author>Neo, Clement ; Ong, Luke ; Torr, Philip ; Geva, Mor ; Krueger, David ; Barez, Fazl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31152255103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Controllability</topic><topic>Data processing</topic><topic>Language</topic><topic>Representations</topic><topic>Vision</topic><topic>Visual observation</topic><topic>Visual tasks</topic><toplevel>online_resources</toplevel><creatorcontrib>Neo, Clement</creatorcontrib><creatorcontrib>Ong, Luke</creatorcontrib><creatorcontrib>Torr, Philip</creatorcontrib><creatorcontrib>Geva, Mor</creatorcontrib><creatorcontrib>Krueger, David</creatorcontrib><creatorcontrib>Barez, Fazl</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neo, Clement</au><au>Ong, Luke</au><au>Torr, Philip</au><au>Geva, Mor</au><au>Krueger, David</au><au>Barez, Fazl</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards Interpreting Visual Information Processing in Vision-Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-10-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Vision-Language Models (VLMs) are powerful tools for processing and understanding text and images. We study the processing of visual tokens in the language model component of LLaVA, a prominent VLM. Our approach focuses on analyzing the localization of object information, the evolution of visual token representations across layers, and the mechanism of integrating visual information for predictions. Through ablation studies, we demonstrated that object identification accuracy drops by over 70\% when object-specific tokens are removed. We observed that visual token representations become increasingly interpretable in the vocabulary space across layers, suggesting an alignment with textual tokens corresponding to image content. Finally, we found that the model extracts object information from these refined representations at the last token position for prediction, mirroring the process in text-only language models for factual association tasks. These findings provide crucial insights into how VLMs process and integrate visual information, bridging the gap between our understanding of language and vision models, and paving the way for more interpretable and controllable multimodal systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3115225510
source Free E- Journals
subjects Ablation
Controllability
Data processing
Language
Representations
Vision
Visual observation
Visual tasks
title Towards Interpreting Visual Information Processing in Vision-Language Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A41%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20Interpreting%20Visual%20Information%20Processing%20in%20Vision-Language%20Models&rft.jtitle=arXiv.org&rft.au=Neo,%20Clement&rft.date=2024-10-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3115225510%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115225510&rft_id=info:pmid/&rfr_iscdi=true