Herd Mentality in Augmentation -- Not a Good Idea! A Robust Multi-stage Approach towards Deepfake Detection

The rapid increase in deepfake technology has raised significant concerns about digital media integrity. Detecting deepfakes is crucial for safeguarding digital media. However, most standard image classifiers fail to distinguish between fake and real faces. Our analysis reveals that this failure is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Monu, Rohan Raju Dhanakshirur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Monu
Rohan Raju Dhanakshirur
description The rapid increase in deepfake technology has raised significant concerns about digital media integrity. Detecting deepfakes is crucial for safeguarding digital media. However, most standard image classifiers fail to distinguish between fake and real faces. Our analysis reveals that this failure is due to the model's inability to explicitly focus on the artefacts typically in deepfakes. We propose an enhanced architecture based on the GenConViT model, which incorporates weighted loss and update augmentation techniques and includes masked eye pretraining. This proposed model improves the F1 score by 1.71% and the accuracy by 4.34% on the Celeb-DF v2 dataset. The source code for our model is available at https://github.com/Monu-Khicher-1/multi-stage-learning
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3115225187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115225187</sourcerecordid><originalsourceid>FETCH-proquest_journals_31152251873</originalsourceid><addsrcrecordid>eNqNjMsOgjAURBsTE4n6D9e4bgKtCFviCxe6MO5NhQvykCK9jfHvhcQPcDUzOTMzYo6Q0uPhSogJmxtTuq4r1oHwfemwKsYuhRM2pOqCPlA0ENn8OWQqdAOcw1kTKDhoncIxRbWACC76bg3BydZUcEMqR4jattMqeQDpt-pSA1vENlMV9oYwGc5mbJyp2uD8p1O23O-um5j3y5dFQ7dS267p0U16ni-E74WB_K_1BRJaRw4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115225187</pqid></control><display><type>article</type><title>Herd Mentality in Augmentation -- Not a Good Idea! A Robust Multi-stage Approach towards Deepfake Detection</title><source>Free E- Journals</source><creator>Monu ; Rohan Raju Dhanakshirur</creator><creatorcontrib>Monu ; Rohan Raju Dhanakshirur</creatorcontrib><description>The rapid increase in deepfake technology has raised significant concerns about digital media integrity. Detecting deepfakes is crucial for safeguarding digital media. However, most standard image classifiers fail to distinguish between fake and real faces. Our analysis reveals that this failure is due to the model's inability to explicitly focus on the artefacts typically in deepfakes. We propose an enhanced architecture based on the GenConViT model, which incorporates weighted loss and update augmentation techniques and includes masked eye pretraining. This proposed model improves the F1 score by 1.71% and the accuracy by 4.34% on the Celeb-DF v2 dataset. The source code for our model is available at https://github.com/Monu-Khicher-1/multi-stage-learning</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Deception ; Digital imaging ; Digital media ; Image enhancement ; Source code</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Monu</creatorcontrib><creatorcontrib>Rohan Raju Dhanakshirur</creatorcontrib><title>Herd Mentality in Augmentation -- Not a Good Idea! A Robust Multi-stage Approach towards Deepfake Detection</title><title>arXiv.org</title><description>The rapid increase in deepfake technology has raised significant concerns about digital media integrity. Detecting deepfakes is crucial for safeguarding digital media. However, most standard image classifiers fail to distinguish between fake and real faces. Our analysis reveals that this failure is due to the model's inability to explicitly focus on the artefacts typically in deepfakes. We propose an enhanced architecture based on the GenConViT model, which incorporates weighted loss and update augmentation techniques and includes masked eye pretraining. This proposed model improves the F1 score by 1.71% and the accuracy by 4.34% on the Celeb-DF v2 dataset. The source code for our model is available at https://github.com/Monu-Khicher-1/multi-stage-learning</description><subject>Deception</subject><subject>Digital imaging</subject><subject>Digital media</subject><subject>Image enhancement</subject><subject>Source code</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjMsOgjAURBsTE4n6D9e4bgKtCFviCxe6MO5NhQvykCK9jfHvhcQPcDUzOTMzYo6Q0uPhSogJmxtTuq4r1oHwfemwKsYuhRM2pOqCPlA0ENn8OWQqdAOcw1kTKDhoncIxRbWACC76bg3BydZUcEMqR4jattMqeQDpt-pSA1vENlMV9oYwGc5mbJyp2uD8p1O23O-um5j3y5dFQ7dS267p0U16ni-E74WB_K_1BRJaRw4</recordid><startdate>20241007</startdate><enddate>20241007</enddate><creator>Monu</creator><creator>Rohan Raju Dhanakshirur</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241007</creationdate><title>Herd Mentality in Augmentation -- Not a Good Idea! A Robust Multi-stage Approach towards Deepfake Detection</title><author>Monu ; Rohan Raju Dhanakshirur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31152251873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deception</topic><topic>Digital imaging</topic><topic>Digital media</topic><topic>Image enhancement</topic><topic>Source code</topic><toplevel>online_resources</toplevel><creatorcontrib>Monu</creatorcontrib><creatorcontrib>Rohan Raju Dhanakshirur</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monu</au><au>Rohan Raju Dhanakshirur</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Herd Mentality in Augmentation -- Not a Good Idea! A Robust Multi-stage Approach towards Deepfake Detection</atitle><jtitle>arXiv.org</jtitle><date>2024-10-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The rapid increase in deepfake technology has raised significant concerns about digital media integrity. Detecting deepfakes is crucial for safeguarding digital media. However, most standard image classifiers fail to distinguish between fake and real faces. Our analysis reveals that this failure is due to the model's inability to explicitly focus on the artefacts typically in deepfakes. We propose an enhanced architecture based on the GenConViT model, which incorporates weighted loss and update augmentation techniques and includes masked eye pretraining. This proposed model improves the F1 score by 1.71% and the accuracy by 4.34% on the Celeb-DF v2 dataset. The source code for our model is available at https://github.com/Monu-Khicher-1/multi-stage-learning</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3115225187
source Free E- Journals
subjects Deception
Digital imaging
Digital media
Image enhancement
Source code
title Herd Mentality in Augmentation -- Not a Good Idea! A Robust Multi-stage Approach towards Deepfake Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Herd%20Mentality%20in%20Augmentation%20--%20Not%20a%20Good%20Idea!%20A%20Robust%20Multi-stage%20Approach%20towards%20Deepfake%20Detection&rft.jtitle=arXiv.org&rft.au=Monu&rft.date=2024-10-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3115225187%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115225187&rft_id=info:pmid/&rfr_iscdi=true