Variational approach to photonic quantum circuits via the parameter shift rule

In the current era of noisy intermediate-scale quantum computers, variational quantum algorithms represent one of the most viable approaches for their application to solve tasks of interest. These algorithms train a parameterized quantum circuit to execute a specific task encoded in a cost function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Hoch, Francesco, Rodari, Giovanni, Giordani, Taira, Perret, Paul, Spagnolo, Nicolò, Carvacho, Gonzalo, Pentangelo, Ciro, Piacentini, Simone, Crespi, Andrea, Ceccarelli, Francesco, Osellame, Roberto, Sciarrino, Fabio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hoch, Francesco
Rodari, Giovanni
Giordani, Taira
Perret, Paul
Spagnolo, Nicolò
Carvacho, Gonzalo
Pentangelo, Ciro
Piacentini, Simone
Crespi, Andrea
Ceccarelli, Francesco
Osellame, Roberto
Sciarrino, Fabio
description In the current era of noisy intermediate-scale quantum computers, variational quantum algorithms represent one of the most viable approaches for their application to solve tasks of interest. These algorithms train a parameterized quantum circuit to execute a specific task encoded in a cost function that needs to be minimized using a classical optimizer. In this context, photonic platforms based on reconfigurable integrated optics appear as one of the prominent platforms for the implementation of variational algorithms. In the circuital model of quantum computation based on qubits, to train variational circuits, the parameter shift rule came into being, which allows for the exact calculation of the derivatives of many functions at the output of a quantum circuit, opening up the possibility of using classical optimisation algorithms based on gradient descent. In this paper, we derive a formulation of the parameter shift rule for reconfigurable optical linear circuits based on the Boson Sampling paradigm. This allows us to naturally embed the common types of experimental noise, such as partial distinguishability, and mixedness of the states, thus obtaining a resilient approach. We also present similar rules for the computations of integrals over the variational parameters. Finally, we employ the developed approach to experimentally test variational algorithms with single-photon states processed in a reconfigurable 6-mode universal integrated interferometer. Specifically, we apply the photonic parameter shift rules to the variational implementation, on a photonic platform, of both an eigensolver and a Universal-Not gate.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3115223409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115223409</sourcerecordid><originalsourceid>FETCH-proquest_journals_31152234093</originalsourceid><addsrcrecordid>eNqNjcsKwjAQAIMgWLT_sOC5kCatj7MonjyJV1lCSra0TZps_H578AM8zWWYWYlCaV1Xp0apjShT6qWU6nBUbasL8XhhJGTyEw6AIUSPxgF7CM6zn8jAnHHiPIKhaDJxgg8hsLMQMOJo2UZIjjqGmAe7E-sOh2TLH7dif7s-L_dqCc_ZJn73Psflld66rluldCPP-j_rC0HIPuc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115223409</pqid></control><display><type>article</type><title>Variational approach to photonic quantum circuits via the parameter shift rule</title><source>Free E- Journals</source><creator>Hoch, Francesco ; Rodari, Giovanni ; Giordani, Taira ; Perret, Paul ; Spagnolo, Nicolò ; Carvacho, Gonzalo ; Pentangelo, Ciro ; Piacentini, Simone ; Crespi, Andrea ; Ceccarelli, Francesco ; Osellame, Roberto ; Sciarrino, Fabio</creator><creatorcontrib>Hoch, Francesco ; Rodari, Giovanni ; Giordani, Taira ; Perret, Paul ; Spagnolo, Nicolò ; Carvacho, Gonzalo ; Pentangelo, Ciro ; Piacentini, Simone ; Crespi, Andrea ; Ceccarelli, Francesco ; Osellame, Roberto ; Sciarrino, Fabio</creatorcontrib><description>In the current era of noisy intermediate-scale quantum computers, variational quantum algorithms represent one of the most viable approaches for their application to solve tasks of interest. These algorithms train a parameterized quantum circuit to execute a specific task encoded in a cost function that needs to be minimized using a classical optimizer. In this context, photonic platforms based on reconfigurable integrated optics appear as one of the prominent platforms for the implementation of variational algorithms. In the circuital model of quantum computation based on qubits, to train variational circuits, the parameter shift rule came into being, which allows for the exact calculation of the derivatives of many functions at the output of a quantum circuit, opening up the possibility of using classical optimisation algorithms based on gradient descent. In this paper, we derive a formulation of the parameter shift rule for reconfigurable optical linear circuits based on the Boson Sampling paradigm. This allows us to naturally embed the common types of experimental noise, such as partial distinguishability, and mixedness of the states, thus obtaining a resilient approach. We also present similar rules for the computations of integrals over the variational parameters. Finally, we employ the developed approach to experimentally test variational algorithms with single-photon states processed in a reconfigurable 6-mode universal integrated interferometer. Specifically, we apply the photonic parameter shift rules to the variational implementation, on a photonic platform, of both an eigensolver and a Universal-Not gate.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Circuits ; Cost function ; Integrated optics ; Linear circuits ; Parameters ; Photonics ; Platforms ; Quantum computers ; Quantum computing ; Qubits (quantum computing) ; Reconfiguration</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hoch, Francesco</creatorcontrib><creatorcontrib>Rodari, Giovanni</creatorcontrib><creatorcontrib>Giordani, Taira</creatorcontrib><creatorcontrib>Perret, Paul</creatorcontrib><creatorcontrib>Spagnolo, Nicolò</creatorcontrib><creatorcontrib>Carvacho, Gonzalo</creatorcontrib><creatorcontrib>Pentangelo, Ciro</creatorcontrib><creatorcontrib>Piacentini, Simone</creatorcontrib><creatorcontrib>Crespi, Andrea</creatorcontrib><creatorcontrib>Ceccarelli, Francesco</creatorcontrib><creatorcontrib>Osellame, Roberto</creatorcontrib><creatorcontrib>Sciarrino, Fabio</creatorcontrib><title>Variational approach to photonic quantum circuits via the parameter shift rule</title><title>arXiv.org</title><description>In the current era of noisy intermediate-scale quantum computers, variational quantum algorithms represent one of the most viable approaches for their application to solve tasks of interest. These algorithms train a parameterized quantum circuit to execute a specific task encoded in a cost function that needs to be minimized using a classical optimizer. In this context, photonic platforms based on reconfigurable integrated optics appear as one of the prominent platforms for the implementation of variational algorithms. In the circuital model of quantum computation based on qubits, to train variational circuits, the parameter shift rule came into being, which allows for the exact calculation of the derivatives of many functions at the output of a quantum circuit, opening up the possibility of using classical optimisation algorithms based on gradient descent. In this paper, we derive a formulation of the parameter shift rule for reconfigurable optical linear circuits based on the Boson Sampling paradigm. This allows us to naturally embed the common types of experimental noise, such as partial distinguishability, and mixedness of the states, thus obtaining a resilient approach. We also present similar rules for the computations of integrals over the variational parameters. Finally, we employ the developed approach to experimentally test variational algorithms with single-photon states processed in a reconfigurable 6-mode universal integrated interferometer. Specifically, we apply the photonic parameter shift rules to the variational implementation, on a photonic platform, of both an eigensolver and a Universal-Not gate.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Cost function</subject><subject>Integrated optics</subject><subject>Linear circuits</subject><subject>Parameters</subject><subject>Photonics</subject><subject>Platforms</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Reconfiguration</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjcsKwjAQAIMgWLT_sOC5kCatj7MonjyJV1lCSra0TZps_H578AM8zWWYWYlCaV1Xp0apjShT6qWU6nBUbasL8XhhJGTyEw6AIUSPxgF7CM6zn8jAnHHiPIKhaDJxgg8hsLMQMOJo2UZIjjqGmAe7E-sOh2TLH7dif7s-L_dqCc_ZJn73Psflld66rluldCPP-j_rC0HIPuc</recordid><startdate>20241009</startdate><enddate>20241009</enddate><creator>Hoch, Francesco</creator><creator>Rodari, Giovanni</creator><creator>Giordani, Taira</creator><creator>Perret, Paul</creator><creator>Spagnolo, Nicolò</creator><creator>Carvacho, Gonzalo</creator><creator>Pentangelo, Ciro</creator><creator>Piacentini, Simone</creator><creator>Crespi, Andrea</creator><creator>Ceccarelli, Francesco</creator><creator>Osellame, Roberto</creator><creator>Sciarrino, Fabio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241009</creationdate><title>Variational approach to photonic quantum circuits via the parameter shift rule</title><author>Hoch, Francesco ; Rodari, Giovanni ; Giordani, Taira ; Perret, Paul ; Spagnolo, Nicolò ; Carvacho, Gonzalo ; Pentangelo, Ciro ; Piacentini, Simone ; Crespi, Andrea ; Ceccarelli, Francesco ; Osellame, Roberto ; Sciarrino, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31152234093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Cost function</topic><topic>Integrated optics</topic><topic>Linear circuits</topic><topic>Parameters</topic><topic>Photonics</topic><topic>Platforms</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Reconfiguration</topic><toplevel>online_resources</toplevel><creatorcontrib>Hoch, Francesco</creatorcontrib><creatorcontrib>Rodari, Giovanni</creatorcontrib><creatorcontrib>Giordani, Taira</creatorcontrib><creatorcontrib>Perret, Paul</creatorcontrib><creatorcontrib>Spagnolo, Nicolò</creatorcontrib><creatorcontrib>Carvacho, Gonzalo</creatorcontrib><creatorcontrib>Pentangelo, Ciro</creatorcontrib><creatorcontrib>Piacentini, Simone</creatorcontrib><creatorcontrib>Crespi, Andrea</creatorcontrib><creatorcontrib>Ceccarelli, Francesco</creatorcontrib><creatorcontrib>Osellame, Roberto</creatorcontrib><creatorcontrib>Sciarrino, Fabio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoch, Francesco</au><au>Rodari, Giovanni</au><au>Giordani, Taira</au><au>Perret, Paul</au><au>Spagnolo, Nicolò</au><au>Carvacho, Gonzalo</au><au>Pentangelo, Ciro</au><au>Piacentini, Simone</au><au>Crespi, Andrea</au><au>Ceccarelli, Francesco</au><au>Osellame, Roberto</au><au>Sciarrino, Fabio</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Variational approach to photonic quantum circuits via the parameter shift rule</atitle><jtitle>arXiv.org</jtitle><date>2024-10-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In the current era of noisy intermediate-scale quantum computers, variational quantum algorithms represent one of the most viable approaches for their application to solve tasks of interest. These algorithms train a parameterized quantum circuit to execute a specific task encoded in a cost function that needs to be minimized using a classical optimizer. In this context, photonic platforms based on reconfigurable integrated optics appear as one of the prominent platforms for the implementation of variational algorithms. In the circuital model of quantum computation based on qubits, to train variational circuits, the parameter shift rule came into being, which allows for the exact calculation of the derivatives of many functions at the output of a quantum circuit, opening up the possibility of using classical optimisation algorithms based on gradient descent. In this paper, we derive a formulation of the parameter shift rule for reconfigurable optical linear circuits based on the Boson Sampling paradigm. This allows us to naturally embed the common types of experimental noise, such as partial distinguishability, and mixedness of the states, thus obtaining a resilient approach. We also present similar rules for the computations of integrals over the variational parameters. Finally, we employ the developed approach to experimentally test variational algorithms with single-photon states processed in a reconfigurable 6-mode universal integrated interferometer. Specifically, we apply the photonic parameter shift rules to the variational implementation, on a photonic platform, of both an eigensolver and a Universal-Not gate.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3115223409
source Free E- Journals
subjects Algorithms
Circuits
Cost function
Integrated optics
Linear circuits
Parameters
Photonics
Platforms
Quantum computers
Quantum computing
Qubits (quantum computing)
Reconfiguration
title Variational approach to photonic quantum circuits via the parameter shift rule
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Variational%20approach%20to%20photonic%20quantum%20circuits%20via%20the%20parameter%20shift%20rule&rft.jtitle=arXiv.org&rft.au=Hoch,%20Francesco&rft.date=2024-10-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3115223409%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115223409&rft_id=info:pmid/&rfr_iscdi=true