Blockchained Federated Learning for Internet of Things: A Comprehensive Survey

The demand for intelligent industries and smart services based on big data is rising rapidly with the increasing digitization and intelligence of the modern world. This survey comprehensively reviews Blockchained Federated Learning (BlockFL) that joins the benefits of both Blockchain and Federated L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM computing surveys 2024-10, Vol.56 (10), p.1-37, Article 258
Hauptverfasser: Jiang, Yanna, Ma, Baihe, Wang, Xu, Yu, Guangsheng, Yu, Ping, Wang, Zhe, Ni, Wei, Liu, Ren Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 10
container_start_page 1
container_title ACM computing surveys
container_volume 56
creator Jiang, Yanna
Ma, Baihe
Wang, Xu
Yu, Guangsheng
Yu, Ping
Wang, Zhe
Ni, Wei
Liu, Ren Ping
description The demand for intelligent industries and smart services based on big data is rising rapidly with the increasing digitization and intelligence of the modern world. This survey comprehensively reviews Blockchained Federated Learning (BlockFL) that joins the benefits of both Blockchain and Federated Learning to provide a secure and efficient solution for the demand. We compare the existing BlockFL models in four Internet-of-Things (IoT) application scenarios: Personal IoT (PIoT), Industrial IoT (IIoT), Internet of Vehicles (IoV), and Internet of Health Things (IoHT), with a focus on security and privacy, trust and reliability, efficiency, and data diversity. Our analysis shows that the features of decentralization and transparency make BlockFL a secure and effective solution for distributed model training, while the overhead and compatibility still need further study. It also reveals the unique challenges of each domain presents unique challenges, e.g., the requirement of accommodating dynamic environments in IoV and the high demands of identity and permission management in IoHT, in addition to some common challenges identified, such as privacy, resource constraints, and data heterogeneity. Furthermore, we examine the existing technologies that can benefit BlockFL, thereby helping researchers and practitioners to make informed decisions about the selection and development of BlockFL for various IoT application scenarios.
doi_str_mv 10.1145/3659099
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3115147372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115147372</sourcerecordid><originalsourceid>FETCH-LOGICAL-a235t-e062829e632aeda1754729c6ed980557e265efbe7a6df89753dadf6ec5209473</originalsourceid><addsrcrecordid>eNo90EFPQjEMAODFaCKi8e5piQdPT7vtbWPekIiSED3I_WW-dfIQ3nB7kPDvmQE9tWm_tE0JuWZwz1gpH4SSBow5IT0mpS60KNkp6YFQUIAAOCcXKS0AgJdM9cjb0zLU3_XcNi06OkaH0XY5m6KNbdN-UR8inbQdxhY7GjydzXM1PdIhHYXVOuIc29RskX5s4hZ3l-TM22XCq2Psk9n4eTZ6LabvL5PRcFpYLmRXICg-4AaV4BadZVqWmptaoTMDyFcjVxL9J2qrnB8YLYWzziusJQdTatEnt4ex6xh-Npi6ahE2sc0bK8GYZJlontXdQdUxpBTRV-vYrGzcVQyq319Vx19leXOQtl79o7_mHpTmYn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115147372</pqid></control><display><type>article</type><title>Blockchained Federated Learning for Internet of Things: A Comprehensive Survey</title><source>ACM Digital Library Complete</source><creator>Jiang, Yanna ; Ma, Baihe ; Wang, Xu ; Yu, Guangsheng ; Yu, Ping ; Wang, Zhe ; Ni, Wei ; Liu, Ren Ping</creator><creatorcontrib>Jiang, Yanna ; Ma, Baihe ; Wang, Xu ; Yu, Guangsheng ; Yu, Ping ; Wang, Zhe ; Ni, Wei ; Liu, Ren Ping</creatorcontrib><description>The demand for intelligent industries and smart services based on big data is rising rapidly with the increasing digitization and intelligence of the modern world. This survey comprehensively reviews Blockchained Federated Learning (BlockFL) that joins the benefits of both Blockchain and Federated Learning to provide a secure and efficient solution for the demand. We compare the existing BlockFL models in four Internet-of-Things (IoT) application scenarios: Personal IoT (PIoT), Industrial IoT (IIoT), Internet of Vehicles (IoV), and Internet of Health Things (IoHT), with a focus on security and privacy, trust and reliability, efficiency, and data diversity. Our analysis shows that the features of decentralization and transparency make BlockFL a secure and effective solution for distributed model training, while the overhead and compatibility still need further study. It also reveals the unique challenges of each domain presents unique challenges, e.g., the requirement of accommodating dynamic environments in IoV and the high demands of identity and permission management in IoHT, in addition to some common challenges identified, such as privacy, resource constraints, and data heterogeneity. Furthermore, we examine the existing technologies that can benefit BlockFL, thereby helping researchers and practitioners to make informed decisions about the selection and development of BlockFL for various IoT application scenarios.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3659099</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Big Data ; Computer systems organization ; Computing methodologies ; Distributed architectures ; Federated learning ; General and reference ; Heterogeneity ; Industrial applications ; Internet of Things ; Internet of Vehicles ; Machine learning ; Privacy ; Surveys and overviews ; Uniqueness</subject><ispartof>ACM computing surveys, 2024-10, Vol.56 (10), p.1-37, Article 258</ispartof><rights>Copyright held by the owner/author(s).</rights><rights>Copyright Association for Computing Machinery Oct 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a235t-e062829e632aeda1754729c6ed980557e265efbe7a6df89753dadf6ec5209473</citedby><cites>FETCH-LOGICAL-a235t-e062829e632aeda1754729c6ed980557e265efbe7a6df89753dadf6ec5209473</cites><orcidid>0000-0001-9439-6437 ; 0000-0003-0780-4637 ; 0000-0002-6111-1607 ; 0000-0002-8913-873X ; 0009-0001-0625-770X ; 0000-0003-4167-2797 ; 0000-0002-8176-6264 ; 0000-0001-7001-6305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3659099$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,2275,27903,27904,40175,75974</link.rule.ids></links><search><creatorcontrib>Jiang, Yanna</creatorcontrib><creatorcontrib>Ma, Baihe</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Yu, Guangsheng</creatorcontrib><creatorcontrib>Yu, Ping</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Ni, Wei</creatorcontrib><creatorcontrib>Liu, Ren Ping</creatorcontrib><title>Blockchained Federated Learning for Internet of Things: A Comprehensive Survey</title><title>ACM computing surveys</title><addtitle>ACM CSUR</addtitle><description>The demand for intelligent industries and smart services based on big data is rising rapidly with the increasing digitization and intelligence of the modern world. This survey comprehensively reviews Blockchained Federated Learning (BlockFL) that joins the benefits of both Blockchain and Federated Learning to provide a secure and efficient solution for the demand. We compare the existing BlockFL models in four Internet-of-Things (IoT) application scenarios: Personal IoT (PIoT), Industrial IoT (IIoT), Internet of Vehicles (IoV), and Internet of Health Things (IoHT), with a focus on security and privacy, trust and reliability, efficiency, and data diversity. Our analysis shows that the features of decentralization and transparency make BlockFL a secure and effective solution for distributed model training, while the overhead and compatibility still need further study. It also reveals the unique challenges of each domain presents unique challenges, e.g., the requirement of accommodating dynamic environments in IoV and the high demands of identity and permission management in IoHT, in addition to some common challenges identified, such as privacy, resource constraints, and data heterogeneity. Furthermore, we examine the existing technologies that can benefit BlockFL, thereby helping researchers and practitioners to make informed decisions about the selection and development of BlockFL for various IoT application scenarios.</description><subject>Big Data</subject><subject>Computer systems organization</subject><subject>Computing methodologies</subject><subject>Distributed architectures</subject><subject>Federated learning</subject><subject>General and reference</subject><subject>Heterogeneity</subject><subject>Industrial applications</subject><subject>Internet of Things</subject><subject>Internet of Vehicles</subject><subject>Machine learning</subject><subject>Privacy</subject><subject>Surveys and overviews</subject><subject>Uniqueness</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo90EFPQjEMAODFaCKi8e5piQdPT7vtbWPekIiSED3I_WW-dfIQ3nB7kPDvmQE9tWm_tE0JuWZwz1gpH4SSBow5IT0mpS60KNkp6YFQUIAAOCcXKS0AgJdM9cjb0zLU3_XcNi06OkaH0XY5m6KNbdN-UR8inbQdxhY7GjydzXM1PdIhHYXVOuIc29RskX5s4hZ3l-TM22XCq2Psk9n4eTZ6LabvL5PRcFpYLmRXICg-4AaV4BadZVqWmptaoTMDyFcjVxL9J2qrnB8YLYWzziusJQdTatEnt4ex6xh-Npi6ahE2sc0bK8GYZJlontXdQdUxpBTRV-vYrGzcVQyq319Vx19leXOQtl79o7_mHpTmYn0</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Jiang, Yanna</creator><creator>Ma, Baihe</creator><creator>Wang, Xu</creator><creator>Yu, Guangsheng</creator><creator>Yu, Ping</creator><creator>Wang, Zhe</creator><creator>Ni, Wei</creator><creator>Liu, Ren Ping</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9439-6437</orcidid><orcidid>https://orcid.org/0000-0003-0780-4637</orcidid><orcidid>https://orcid.org/0000-0002-6111-1607</orcidid><orcidid>https://orcid.org/0000-0002-8913-873X</orcidid><orcidid>https://orcid.org/0009-0001-0625-770X</orcidid><orcidid>https://orcid.org/0000-0003-4167-2797</orcidid><orcidid>https://orcid.org/0000-0002-8176-6264</orcidid><orcidid>https://orcid.org/0000-0001-7001-6305</orcidid></search><sort><creationdate>20241001</creationdate><title>Blockchained Federated Learning for Internet of Things: A Comprehensive Survey</title><author>Jiang, Yanna ; Ma, Baihe ; Wang, Xu ; Yu, Guangsheng ; Yu, Ping ; Wang, Zhe ; Ni, Wei ; Liu, Ren Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a235t-e062829e632aeda1754729c6ed980557e265efbe7a6df89753dadf6ec5209473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Big Data</topic><topic>Computer systems organization</topic><topic>Computing methodologies</topic><topic>Distributed architectures</topic><topic>Federated learning</topic><topic>General and reference</topic><topic>Heterogeneity</topic><topic>Industrial applications</topic><topic>Internet of Things</topic><topic>Internet of Vehicles</topic><topic>Machine learning</topic><topic>Privacy</topic><topic>Surveys and overviews</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yanna</creatorcontrib><creatorcontrib>Ma, Baihe</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Yu, Guangsheng</creatorcontrib><creatorcontrib>Yu, Ping</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Ni, Wei</creatorcontrib><creatorcontrib>Liu, Ren Ping</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yanna</au><au>Ma, Baihe</au><au>Wang, Xu</au><au>Yu, Guangsheng</au><au>Yu, Ping</au><au>Wang, Zhe</au><au>Ni, Wei</au><au>Liu, Ren Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blockchained Federated Learning for Internet of Things: A Comprehensive Survey</atitle><jtitle>ACM computing surveys</jtitle><stitle>ACM CSUR</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>56</volume><issue>10</issue><spage>1</spage><epage>37</epage><pages>1-37</pages><artnum>258</artnum><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>The demand for intelligent industries and smart services based on big data is rising rapidly with the increasing digitization and intelligence of the modern world. This survey comprehensively reviews Blockchained Federated Learning (BlockFL) that joins the benefits of both Blockchain and Federated Learning to provide a secure and efficient solution for the demand. We compare the existing BlockFL models in four Internet-of-Things (IoT) application scenarios: Personal IoT (PIoT), Industrial IoT (IIoT), Internet of Vehicles (IoV), and Internet of Health Things (IoHT), with a focus on security and privacy, trust and reliability, efficiency, and data diversity. Our analysis shows that the features of decentralization and transparency make BlockFL a secure and effective solution for distributed model training, while the overhead and compatibility still need further study. It also reveals the unique challenges of each domain presents unique challenges, e.g., the requirement of accommodating dynamic environments in IoV and the high demands of identity and permission management in IoHT, in addition to some common challenges identified, such as privacy, resource constraints, and data heterogeneity. Furthermore, we examine the existing technologies that can benefit BlockFL, thereby helping researchers and practitioners to make informed decisions about the selection and development of BlockFL for various IoT application scenarios.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3659099</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0001-9439-6437</orcidid><orcidid>https://orcid.org/0000-0003-0780-4637</orcidid><orcidid>https://orcid.org/0000-0002-6111-1607</orcidid><orcidid>https://orcid.org/0000-0002-8913-873X</orcidid><orcidid>https://orcid.org/0009-0001-0625-770X</orcidid><orcidid>https://orcid.org/0000-0003-4167-2797</orcidid><orcidid>https://orcid.org/0000-0002-8176-6264</orcidid><orcidid>https://orcid.org/0000-0001-7001-6305</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-0300
ispartof ACM computing surveys, 2024-10, Vol.56 (10), p.1-37, Article 258
issn 0360-0300
1557-7341
language eng
recordid cdi_proquest_journals_3115147372
source ACM Digital Library Complete
subjects Big Data
Computer systems organization
Computing methodologies
Distributed architectures
Federated learning
General and reference
Heterogeneity
Industrial applications
Internet of Things
Internet of Vehicles
Machine learning
Privacy
Surveys and overviews
Uniqueness
title Blockchained Federated Learning for Internet of Things: A Comprehensive Survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blockchained%20Federated%20Learning%20for%20Internet%20of%20Things:%20A%20Comprehensive%20Survey&rft.jtitle=ACM%20computing%20surveys&rft.au=Jiang,%20Yanna&rft.date=2024-10-01&rft.volume=56&rft.issue=10&rft.spage=1&rft.epage=37&rft.pages=1-37&rft.artnum=258&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3659099&rft_dat=%3Cproquest_cross%3E3115147372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115147372&rft_id=info:pmid/&rfr_iscdi=true