Blockchained Federated Learning for Internet of Things: A Comprehensive Survey
The demand for intelligent industries and smart services based on big data is rising rapidly with the increasing digitization and intelligence of the modern world. This survey comprehensively reviews Blockchained Federated Learning (BlockFL) that joins the benefits of both Blockchain and Federated L...
Gespeichert in:
Veröffentlicht in: | ACM computing surveys 2024-10, Vol.56 (10), p.1-37, Article 258 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | ACM computing surveys |
container_volume | 56 |
creator | Jiang, Yanna Ma, Baihe Wang, Xu Yu, Guangsheng Yu, Ping Wang, Zhe Ni, Wei Liu, Ren Ping |
description | The demand for intelligent industries and smart services based on big data is rising rapidly with the increasing digitization and intelligence of the modern world. This survey comprehensively reviews Blockchained Federated Learning (BlockFL) that joins the benefits of both Blockchain and Federated Learning to provide a secure and efficient solution for the demand. We compare the existing BlockFL models in four Internet-of-Things (IoT) application scenarios: Personal IoT (PIoT), Industrial IoT (IIoT), Internet of Vehicles (IoV), and Internet of Health Things (IoHT), with a focus on security and privacy, trust and reliability, efficiency, and data diversity. Our analysis shows that the features of decentralization and transparency make BlockFL a secure and effective solution for distributed model training, while the overhead and compatibility still need further study. It also reveals the unique challenges of each domain presents unique challenges, e.g., the requirement of accommodating dynamic environments in IoV and the high demands of identity and permission management in IoHT, in addition to some common challenges identified, such as privacy, resource constraints, and data heterogeneity. Furthermore, we examine the existing technologies that can benefit BlockFL, thereby helping researchers and practitioners to make informed decisions about the selection and development of BlockFL for various IoT application scenarios. |
doi_str_mv | 10.1145/3659099 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3115147372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115147372</sourcerecordid><originalsourceid>FETCH-LOGICAL-a235t-e062829e632aeda1754729c6ed980557e265efbe7a6df89753dadf6ec5209473</originalsourceid><addsrcrecordid>eNo90EFPQjEMAODFaCKi8e5piQdPT7vtbWPekIiSED3I_WW-dfIQ3nB7kPDvmQE9tWm_tE0JuWZwz1gpH4SSBow5IT0mpS60KNkp6YFQUIAAOCcXKS0AgJdM9cjb0zLU3_XcNi06OkaH0XY5m6KNbdN-UR8inbQdxhY7GjydzXM1PdIhHYXVOuIc29RskX5s4hZ3l-TM22XCq2Psk9n4eTZ6LabvL5PRcFpYLmRXICg-4AaV4BadZVqWmptaoTMDyFcjVxL9J2qrnB8YLYWzziusJQdTatEnt4ex6xh-Npi6ahE2sc0bK8GYZJlontXdQdUxpBTRV-vYrGzcVQyq319Vx19leXOQtl79o7_mHpTmYn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115147372</pqid></control><display><type>article</type><title>Blockchained Federated Learning for Internet of Things: A Comprehensive Survey</title><source>ACM Digital Library Complete</source><creator>Jiang, Yanna ; Ma, Baihe ; Wang, Xu ; Yu, Guangsheng ; Yu, Ping ; Wang, Zhe ; Ni, Wei ; Liu, Ren Ping</creator><creatorcontrib>Jiang, Yanna ; Ma, Baihe ; Wang, Xu ; Yu, Guangsheng ; Yu, Ping ; Wang, Zhe ; Ni, Wei ; Liu, Ren Ping</creatorcontrib><description>The demand for intelligent industries and smart services based on big data is rising rapidly with the increasing digitization and intelligence of the modern world. This survey comprehensively reviews Blockchained Federated Learning (BlockFL) that joins the benefits of both Blockchain and Federated Learning to provide a secure and efficient solution for the demand. We compare the existing BlockFL models in four Internet-of-Things (IoT) application scenarios: Personal IoT (PIoT), Industrial IoT (IIoT), Internet of Vehicles (IoV), and Internet of Health Things (IoHT), with a focus on security and privacy, trust and reliability, efficiency, and data diversity. Our analysis shows that the features of decentralization and transparency make BlockFL a secure and effective solution for distributed model training, while the overhead and compatibility still need further study. It also reveals the unique challenges of each domain presents unique challenges, e.g., the requirement of accommodating dynamic environments in IoV and the high demands of identity and permission management in IoHT, in addition to some common challenges identified, such as privacy, resource constraints, and data heterogeneity. Furthermore, we examine the existing technologies that can benefit BlockFL, thereby helping researchers and practitioners to make informed decisions about the selection and development of BlockFL for various IoT application scenarios.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3659099</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Big Data ; Computer systems organization ; Computing methodologies ; Distributed architectures ; Federated learning ; General and reference ; Heterogeneity ; Industrial applications ; Internet of Things ; Internet of Vehicles ; Machine learning ; Privacy ; Surveys and overviews ; Uniqueness</subject><ispartof>ACM computing surveys, 2024-10, Vol.56 (10), p.1-37, Article 258</ispartof><rights>Copyright held by the owner/author(s).</rights><rights>Copyright Association for Computing Machinery Oct 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a235t-e062829e632aeda1754729c6ed980557e265efbe7a6df89753dadf6ec5209473</citedby><cites>FETCH-LOGICAL-a235t-e062829e632aeda1754729c6ed980557e265efbe7a6df89753dadf6ec5209473</cites><orcidid>0000-0001-9439-6437 ; 0000-0003-0780-4637 ; 0000-0002-6111-1607 ; 0000-0002-8913-873X ; 0009-0001-0625-770X ; 0000-0003-4167-2797 ; 0000-0002-8176-6264 ; 0000-0001-7001-6305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3659099$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,2275,27903,27904,40175,75974</link.rule.ids></links><search><creatorcontrib>Jiang, Yanna</creatorcontrib><creatorcontrib>Ma, Baihe</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Yu, Guangsheng</creatorcontrib><creatorcontrib>Yu, Ping</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Ni, Wei</creatorcontrib><creatorcontrib>Liu, Ren Ping</creatorcontrib><title>Blockchained Federated Learning for Internet of Things: A Comprehensive Survey</title><title>ACM computing surveys</title><addtitle>ACM CSUR</addtitle><description>The demand for intelligent industries and smart services based on big data is rising rapidly with the increasing digitization and intelligence of the modern world. This survey comprehensively reviews Blockchained Federated Learning (BlockFL) that joins the benefits of both Blockchain and Federated Learning to provide a secure and efficient solution for the demand. We compare the existing BlockFL models in four Internet-of-Things (IoT) application scenarios: Personal IoT (PIoT), Industrial IoT (IIoT), Internet of Vehicles (IoV), and Internet of Health Things (IoHT), with a focus on security and privacy, trust and reliability, efficiency, and data diversity. Our analysis shows that the features of decentralization and transparency make BlockFL a secure and effective solution for distributed model training, while the overhead and compatibility still need further study. It also reveals the unique challenges of each domain presents unique challenges, e.g., the requirement of accommodating dynamic environments in IoV and the high demands of identity and permission management in IoHT, in addition to some common challenges identified, such as privacy, resource constraints, and data heterogeneity. Furthermore, we examine the existing technologies that can benefit BlockFL, thereby helping researchers and practitioners to make informed decisions about the selection and development of BlockFL for various IoT application scenarios.</description><subject>Big Data</subject><subject>Computer systems organization</subject><subject>Computing methodologies</subject><subject>Distributed architectures</subject><subject>Federated learning</subject><subject>General and reference</subject><subject>Heterogeneity</subject><subject>Industrial applications</subject><subject>Internet of Things</subject><subject>Internet of Vehicles</subject><subject>Machine learning</subject><subject>Privacy</subject><subject>Surveys and overviews</subject><subject>Uniqueness</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo90EFPQjEMAODFaCKi8e5piQdPT7vtbWPekIiSED3I_WW-dfIQ3nB7kPDvmQE9tWm_tE0JuWZwz1gpH4SSBow5IT0mpS60KNkp6YFQUIAAOCcXKS0AgJdM9cjb0zLU3_XcNi06OkaH0XY5m6KNbdN-UR8inbQdxhY7GjydzXM1PdIhHYXVOuIc29RskX5s4hZ3l-TM22XCq2Psk9n4eTZ6LabvL5PRcFpYLmRXICg-4AaV4BadZVqWmptaoTMDyFcjVxL9J2qrnB8YLYWzziusJQdTatEnt4ex6xh-Npi6ahE2sc0bK8GYZJlontXdQdUxpBTRV-vYrGzcVQyq319Vx19leXOQtl79o7_mHpTmYn0</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Jiang, Yanna</creator><creator>Ma, Baihe</creator><creator>Wang, Xu</creator><creator>Yu, Guangsheng</creator><creator>Yu, Ping</creator><creator>Wang, Zhe</creator><creator>Ni, Wei</creator><creator>Liu, Ren Ping</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9439-6437</orcidid><orcidid>https://orcid.org/0000-0003-0780-4637</orcidid><orcidid>https://orcid.org/0000-0002-6111-1607</orcidid><orcidid>https://orcid.org/0000-0002-8913-873X</orcidid><orcidid>https://orcid.org/0009-0001-0625-770X</orcidid><orcidid>https://orcid.org/0000-0003-4167-2797</orcidid><orcidid>https://orcid.org/0000-0002-8176-6264</orcidid><orcidid>https://orcid.org/0000-0001-7001-6305</orcidid></search><sort><creationdate>20241001</creationdate><title>Blockchained Federated Learning for Internet of Things: A Comprehensive Survey</title><author>Jiang, Yanna ; Ma, Baihe ; Wang, Xu ; Yu, Guangsheng ; Yu, Ping ; Wang, Zhe ; Ni, Wei ; Liu, Ren Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a235t-e062829e632aeda1754729c6ed980557e265efbe7a6df89753dadf6ec5209473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Big Data</topic><topic>Computer systems organization</topic><topic>Computing methodologies</topic><topic>Distributed architectures</topic><topic>Federated learning</topic><topic>General and reference</topic><topic>Heterogeneity</topic><topic>Industrial applications</topic><topic>Internet of Things</topic><topic>Internet of Vehicles</topic><topic>Machine learning</topic><topic>Privacy</topic><topic>Surveys and overviews</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yanna</creatorcontrib><creatorcontrib>Ma, Baihe</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Yu, Guangsheng</creatorcontrib><creatorcontrib>Yu, Ping</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Ni, Wei</creatorcontrib><creatorcontrib>Liu, Ren Ping</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yanna</au><au>Ma, Baihe</au><au>Wang, Xu</au><au>Yu, Guangsheng</au><au>Yu, Ping</au><au>Wang, Zhe</au><au>Ni, Wei</au><au>Liu, Ren Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blockchained Federated Learning for Internet of Things: A Comprehensive Survey</atitle><jtitle>ACM computing surveys</jtitle><stitle>ACM CSUR</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>56</volume><issue>10</issue><spage>1</spage><epage>37</epage><pages>1-37</pages><artnum>258</artnum><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>The demand for intelligent industries and smart services based on big data is rising rapidly with the increasing digitization and intelligence of the modern world. This survey comprehensively reviews Blockchained Federated Learning (BlockFL) that joins the benefits of both Blockchain and Federated Learning to provide a secure and efficient solution for the demand. We compare the existing BlockFL models in four Internet-of-Things (IoT) application scenarios: Personal IoT (PIoT), Industrial IoT (IIoT), Internet of Vehicles (IoV), and Internet of Health Things (IoHT), with a focus on security and privacy, trust and reliability, efficiency, and data diversity. Our analysis shows that the features of decentralization and transparency make BlockFL a secure and effective solution for distributed model training, while the overhead and compatibility still need further study. It also reveals the unique challenges of each domain presents unique challenges, e.g., the requirement of accommodating dynamic environments in IoV and the high demands of identity and permission management in IoHT, in addition to some common challenges identified, such as privacy, resource constraints, and data heterogeneity. Furthermore, we examine the existing technologies that can benefit BlockFL, thereby helping researchers and practitioners to make informed decisions about the selection and development of BlockFL for various IoT application scenarios.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3659099</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0001-9439-6437</orcidid><orcidid>https://orcid.org/0000-0003-0780-4637</orcidid><orcidid>https://orcid.org/0000-0002-6111-1607</orcidid><orcidid>https://orcid.org/0000-0002-8913-873X</orcidid><orcidid>https://orcid.org/0009-0001-0625-770X</orcidid><orcidid>https://orcid.org/0000-0003-4167-2797</orcidid><orcidid>https://orcid.org/0000-0002-8176-6264</orcidid><orcidid>https://orcid.org/0000-0001-7001-6305</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-0300 |
ispartof | ACM computing surveys, 2024-10, Vol.56 (10), p.1-37, Article 258 |
issn | 0360-0300 1557-7341 |
language | eng |
recordid | cdi_proquest_journals_3115147372 |
source | ACM Digital Library Complete |
subjects | Big Data Computer systems organization Computing methodologies Distributed architectures Federated learning General and reference Heterogeneity Industrial applications Internet of Things Internet of Vehicles Machine learning Privacy Surveys and overviews Uniqueness |
title | Blockchained Federated Learning for Internet of Things: A Comprehensive Survey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blockchained%20Federated%20Learning%20for%20Internet%20of%20Things:%20A%20Comprehensive%20Survey&rft.jtitle=ACM%20computing%20surveys&rft.au=Jiang,%20Yanna&rft.date=2024-10-01&rft.volume=56&rft.issue=10&rft.spage=1&rft.epage=37&rft.pages=1-37&rft.artnum=258&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3659099&rft_dat=%3Cproquest_cross%3E3115147372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115147372&rft_id=info:pmid/&rfr_iscdi=true |