Emergency control methods for power systems based on improved deep reinforcement learning

In order to achieve fast and accurate transient stability analysis and emergency control, this paper proposes a transient stability emergency control method based on improved deep reinforcement learning. In order to fully explore the temporal and spatial variation trend of transient response, a mult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2024-10, Vol.2858 (1), p.12035
Hauptverfasser: Zhang, Jie, Zhu, Yihua, Liang, Zhuohang, Ma, Qinfeng, Zhang, Qingqing, Liu, Mingshun, An, Su, Pu, Qingxin, Dai, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12035
container_title Journal of physics. Conference series
container_volume 2858
creator Zhang, Jie
Zhu, Yihua
Liang, Zhuohang
Ma, Qinfeng
Zhang, Qingqing
Liu, Mingshun
An, Su
Pu, Qingxin
Dai, Jiang
description In order to achieve fast and accurate transient stability analysis and emergency control, this paper proposes a transient stability emergency control method based on improved deep reinforcement learning. In order to fully explore the temporal and spatial variation trend of transient response, a multi-dimensional feature containing information such as transient situation energy is constructed, and the deep reinforcement learning model is transformed based on the time-space graph neural network. On this basis, an emergency control model is constructed, and the power grid knowledge is integrated into the emergency control decision-making scheme to reduce the exploration of invalid decision-making and improve the performance of the model. The effectiveness of the proposed method is verified in the IEEE-39 system.
doi_str_mv 10.1088/1742-6596/2858/1/012035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3115066546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115066546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1695-a13b7da55ca6fade3069a5c17103ee149ecb93e0bdbe23519797f2c08a43c0cd3</originalsourceid><addsrcrecordid>eNqFkMFOwzAMhiMEEmPwDETiXJY0TdIe0TQY0iQucOAUpYk7Oq1JSTrQ3p5UReOIL7bl_7etD6FbSu4pKcsFlUWeCV6JRV7y1C4IzQnjZ2h2mpyf6rK8RFcx7ghhKeQMva86CFtw5oiNd0Pwe9zB8OFtxI0PuPffEHA8xgG6iGsdwWLvcNv1wX-l2gL0OEDrkthAB27Ae9DBtW57jS4avY9w85vn6O1x9bpcZ5uXp-flwyYzVFQ805TV0mrOjRaNtsCIqDQ3VFLCAGhRgakrBqS2NeSM00pWsskNKXXBDDGWzdHdtDe99HmAOKidPwSXTipGKSdC8EIklZxUJvgYAzSqD22nw1FRokaOaiSkRlpq5KiomjgmJ5ucre__Vv_n-gGuC3ZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115066546</pqid></control><display><type>article</type><title>Emergency control methods for power systems based on improved deep reinforcement learning</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Jie ; Zhu, Yihua ; Liang, Zhuohang ; Ma, Qinfeng ; Zhang, Qingqing ; Liu, Mingshun ; An, Su ; Pu, Qingxin ; Dai, Jiang</creator><creatorcontrib>Zhang, Jie ; Zhu, Yihua ; Liang, Zhuohang ; Ma, Qinfeng ; Zhang, Qingqing ; Liu, Mingshun ; An, Su ; Pu, Qingxin ; Dai, Jiang</creatorcontrib><description>In order to achieve fast and accurate transient stability analysis and emergency control, this paper proposes a transient stability emergency control method based on improved deep reinforcement learning. In order to fully explore the temporal and spatial variation trend of transient response, a multi-dimensional feature containing information such as transient situation energy is constructed, and the deep reinforcement learning model is transformed based on the time-space graph neural network. On this basis, an emergency control model is constructed, and the power grid knowledge is integrated into the emergency control decision-making scheme to reduce the exploration of invalid decision-making and improve the performance of the model. The effectiveness of the proposed method is verified in the IEEE-39 system.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2858/1/012035</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Control methods ; Control stability ; Decision making ; Deep learning ; Emergency response ; Graph neural networks ; Multidimensional methods ; Stability analysis ; Transient response ; Transient stability</subject><ispartof>Journal of physics. Conference series, 2024-10, Vol.2858 (1), p.12035</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1695-a13b7da55ca6fade3069a5c17103ee149ecb93e0bdbe23519797f2c08a43c0cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2858/1/012035/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53819,53846</link.rule.ids></links><search><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Zhu, Yihua</creatorcontrib><creatorcontrib>Liang, Zhuohang</creatorcontrib><creatorcontrib>Ma, Qinfeng</creatorcontrib><creatorcontrib>Zhang, Qingqing</creatorcontrib><creatorcontrib>Liu, Mingshun</creatorcontrib><creatorcontrib>An, Su</creatorcontrib><creatorcontrib>Pu, Qingxin</creatorcontrib><creatorcontrib>Dai, Jiang</creatorcontrib><title>Emergency control methods for power systems based on improved deep reinforcement learning</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In order to achieve fast and accurate transient stability analysis and emergency control, this paper proposes a transient stability emergency control method based on improved deep reinforcement learning. In order to fully explore the temporal and spatial variation trend of transient response, a multi-dimensional feature containing information such as transient situation energy is constructed, and the deep reinforcement learning model is transformed based on the time-space graph neural network. On this basis, an emergency control model is constructed, and the power grid knowledge is integrated into the emergency control decision-making scheme to reduce the exploration of invalid decision-making and improve the performance of the model. The effectiveness of the proposed method is verified in the IEEE-39 system.</description><subject>Control methods</subject><subject>Control stability</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Emergency response</subject><subject>Graph neural networks</subject><subject>Multidimensional methods</subject><subject>Stability analysis</subject><subject>Transient response</subject><subject>Transient stability</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkMFOwzAMhiMEEmPwDETiXJY0TdIe0TQY0iQucOAUpYk7Oq1JSTrQ3p5UReOIL7bl_7etD6FbSu4pKcsFlUWeCV6JRV7y1C4IzQnjZ2h2mpyf6rK8RFcx7ghhKeQMva86CFtw5oiNd0Pwe9zB8OFtxI0PuPffEHA8xgG6iGsdwWLvcNv1wX-l2gL0OEDrkthAB27Ae9DBtW57jS4avY9w85vn6O1x9bpcZ5uXp-flwyYzVFQ805TV0mrOjRaNtsCIqDQ3VFLCAGhRgakrBqS2NeSM00pWsskNKXXBDDGWzdHdtDe99HmAOKidPwSXTipGKSdC8EIklZxUJvgYAzSqD22nw1FRokaOaiSkRlpq5KiomjgmJ5ucre__Vv_n-gGuC3ZY</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zhang, Jie</creator><creator>Zhu, Yihua</creator><creator>Liang, Zhuohang</creator><creator>Ma, Qinfeng</creator><creator>Zhang, Qingqing</creator><creator>Liu, Mingshun</creator><creator>An, Su</creator><creator>Pu, Qingxin</creator><creator>Dai, Jiang</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20241001</creationdate><title>Emergency control methods for power systems based on improved deep reinforcement learning</title><author>Zhang, Jie ; Zhu, Yihua ; Liang, Zhuohang ; Ma, Qinfeng ; Zhang, Qingqing ; Liu, Mingshun ; An, Su ; Pu, Qingxin ; Dai, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1695-a13b7da55ca6fade3069a5c17103ee149ecb93e0bdbe23519797f2c08a43c0cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Control methods</topic><topic>Control stability</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Emergency response</topic><topic>Graph neural networks</topic><topic>Multidimensional methods</topic><topic>Stability analysis</topic><topic>Transient response</topic><topic>Transient stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Zhu, Yihua</creatorcontrib><creatorcontrib>Liang, Zhuohang</creatorcontrib><creatorcontrib>Ma, Qinfeng</creatorcontrib><creatorcontrib>Zhang, Qingqing</creatorcontrib><creatorcontrib>Liu, Mingshun</creatorcontrib><creatorcontrib>An, Su</creatorcontrib><creatorcontrib>Pu, Qingxin</creatorcontrib><creatorcontrib>Dai, Jiang</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jie</au><au>Zhu, Yihua</au><au>Liang, Zhuohang</au><au>Ma, Qinfeng</au><au>Zhang, Qingqing</au><au>Liu, Mingshun</au><au>An, Su</au><au>Pu, Qingxin</au><au>Dai, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emergency control methods for power systems based on improved deep reinforcement learning</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>2858</volume><issue>1</issue><spage>12035</spage><pages>12035-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In order to achieve fast and accurate transient stability analysis and emergency control, this paper proposes a transient stability emergency control method based on improved deep reinforcement learning. In order to fully explore the temporal and spatial variation trend of transient response, a multi-dimensional feature containing information such as transient situation energy is constructed, and the deep reinforcement learning model is transformed based on the time-space graph neural network. On this basis, an emergency control model is constructed, and the power grid knowledge is integrated into the emergency control decision-making scheme to reduce the exploration of invalid decision-making and improve the performance of the model. The effectiveness of the proposed method is verified in the IEEE-39 system.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2858/1/012035</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2024-10, Vol.2858 (1), p.12035
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_3115066546
source IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Control methods
Control stability
Decision making
Deep learning
Emergency response
Graph neural networks
Multidimensional methods
Stability analysis
Transient response
Transient stability
title Emergency control methods for power systems based on improved deep reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emergency%20control%20methods%20for%20power%20systems%20based%20on%20improved%20deep%20reinforcement%20learning&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Zhang,%20Jie&rft.date=2024-10-01&rft.volume=2858&rft.issue=1&rft.spage=12035&rft.pages=12035-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2858/1/012035&rft_dat=%3Cproquest_cross%3E3115066546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115066546&rft_id=info:pmid/&rfr_iscdi=true