System size effects on the free energy landscapes from molecular dynamics of phase-separating bilayers
The “lipid raft” hypothesis proposes that cell membranes contain distinct domains of varying lipid compositions, where “rafts” of ordered lipids and cholesterol coexist with disordered lipid regions. Experimental and theoretical phase diagrams of model membranes have revealed multiple coexisting pha...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2024-10, Vol.161 (14) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 161 |
creator | Poruthoor, Ashlin J. Stallone, Jack J. Miaro, Megan Sharma, Akshara Grossfield, Alan |
description | The “lipid raft” hypothesis proposes that cell membranes contain distinct domains of varying lipid compositions, where “rafts” of ordered lipids and cholesterol coexist with disordered lipid regions. Experimental and theoretical phase diagrams of model membranes have revealed multiple coexisting phases. Molecular dynamics (MD) simulations can also capture spontaneous phase separation of bilayers. However, these methods merely determine the sign of the free energy change upon phase separation—whether or not it is favorable—but not the amplitude. Recently, we developed a workflow to compute the free energy of phase separation from MD simulations using the weighted ensemble method. However, while theoretical treatments generally focus on infinite systems and experimental measurements on mesoscopic to macroscopic systems, MD simulations are comparatively small. Therefore, if we are to put the results of these calculations into the appropriate context, we need to understand the effects the finite size of the simulation has on the computed free energy landscapes. In this study, we investigate this phenomenon by computing free energy profiles for a model phase-separating system as a function of system size, ranging from 324 to 10 110 lipids. The results suggest that, within the limits of statistical uncertainty, bulk-like behavior emerges once the systems contain roughly 4000 lipids. |
doi_str_mv | 10.1063/5.0225753 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3114563340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114502098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-690681d0069fd21c89fa9f0db43eafbe934a9854c7c556b048f549f66edbcdfa3</originalsourceid><addsrcrecordid>eNp90E9L5TAUBfAgir5RF36BIeDGEao3SZPXLEWcURBcqOuSpjda6b_JbRf10xt5b2bhwlXg8svhcBg7EXAhwKhLfQFS6rVWO2wloLDZ2ljYZSsAKTJrwBywH0RvACDWMt9nB8qqQgolVyw8LjRhx6l5R44hoJ-IDz2fXpGHiOnWY3xZeOv6mrwbkdJ56Hg3tOjn1kVeL73rGp9-BT6-OsKMcHTRTU3_wqumdQtGOmJ7wbWEx9v3kD3_vnm6vs3uH_7cXV_dZ16qYspSbVOIGsDYUEvhCxucDVBXuUIXKrQqd7bQuV97rU0FeRF0boMxWFe-Dk4dsrNN7hiHvzPSVHYNeWxTfRxmKpUQuQYJtkj09At9G-bYp3YbZZTKIalfG-XjQBQxlGNsOheXUkD5OX6py-34yf7cJs5Vh_V_-W_tBM43gHwzpYGG_pu0D7yOjI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114563340</pqid></control><display><type>article</type><title>System size effects on the free energy landscapes from molecular dynamics of phase-separating bilayers</title><source>AIP Journals Complete</source><creator>Poruthoor, Ashlin J. ; Stallone, Jack J. ; Miaro, Megan ; Sharma, Akshara ; Grossfield, Alan</creator><creatorcontrib>Poruthoor, Ashlin J. ; Stallone, Jack J. ; Miaro, Megan ; Sharma, Akshara ; Grossfield, Alan</creatorcontrib><description>The “lipid raft” hypothesis proposes that cell membranes contain distinct domains of varying lipid compositions, where “rafts” of ordered lipids and cholesterol coexist with disordered lipid regions. Experimental and theoretical phase diagrams of model membranes have revealed multiple coexisting phases. Molecular dynamics (MD) simulations can also capture spontaneous phase separation of bilayers. However, these methods merely determine the sign of the free energy change upon phase separation—whether or not it is favorable—but not the amplitude. Recently, we developed a workflow to compute the free energy of phase separation from MD simulations using the weighted ensemble method. However, while theoretical treatments generally focus on infinite systems and experimental measurements on mesoscopic to macroscopic systems, MD simulations are comparatively small. Therefore, if we are to put the results of these calculations into the appropriate context, we need to understand the effects the finite size of the simulation has on the computed free energy landscapes. In this study, we investigate this phenomenon by computing free energy profiles for a model phase-separating system as a function of system size, ranging from 324 to 10 110 lipids. The results suggest that, within the limits of statistical uncertainty, bulk-like behavior emerges once the systems contain roughly 4000 lipids.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0225753</identifier><identifier>PMID: 39382132</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Cell membranes ; Free energy ; Lipids ; Molecular dynamics ; Phase diagrams ; Phase separation ; Simulation ; Size effects ; Workflow</subject><ispartof>The Journal of chemical physics, 2024-10, Vol.161 (14)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-690681d0069fd21c89fa9f0db43eafbe934a9854c7c556b048f549f66edbcdfa3</cites><orcidid>0000-0002-8910-9920 ; 0000-0003-1715-3639 ; 0000-0002-5877-2789 ; 0000-0001-6211-380X ; 0000-0003-3952-8884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0225753$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39382132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poruthoor, Ashlin J.</creatorcontrib><creatorcontrib>Stallone, Jack J.</creatorcontrib><creatorcontrib>Miaro, Megan</creatorcontrib><creatorcontrib>Sharma, Akshara</creatorcontrib><creatorcontrib>Grossfield, Alan</creatorcontrib><title>System size effects on the free energy landscapes from molecular dynamics of phase-separating bilayers</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The “lipid raft” hypothesis proposes that cell membranes contain distinct domains of varying lipid compositions, where “rafts” of ordered lipids and cholesterol coexist with disordered lipid regions. Experimental and theoretical phase diagrams of model membranes have revealed multiple coexisting phases. Molecular dynamics (MD) simulations can also capture spontaneous phase separation of bilayers. However, these methods merely determine the sign of the free energy change upon phase separation—whether or not it is favorable—but not the amplitude. Recently, we developed a workflow to compute the free energy of phase separation from MD simulations using the weighted ensemble method. However, while theoretical treatments generally focus on infinite systems and experimental measurements on mesoscopic to macroscopic systems, MD simulations are comparatively small. Therefore, if we are to put the results of these calculations into the appropriate context, we need to understand the effects the finite size of the simulation has on the computed free energy landscapes. In this study, we investigate this phenomenon by computing free energy profiles for a model phase-separating system as a function of system size, ranging from 324 to 10 110 lipids. The results suggest that, within the limits of statistical uncertainty, bulk-like behavior emerges once the systems contain roughly 4000 lipids.</description><subject>Cell membranes</subject><subject>Free energy</subject><subject>Lipids</subject><subject>Molecular dynamics</subject><subject>Phase diagrams</subject><subject>Phase separation</subject><subject>Simulation</subject><subject>Size effects</subject><subject>Workflow</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E9L5TAUBfAgir5RF36BIeDGEao3SZPXLEWcURBcqOuSpjda6b_JbRf10xt5b2bhwlXg8svhcBg7EXAhwKhLfQFS6rVWO2wloLDZ2ljYZSsAKTJrwBywH0RvACDWMt9nB8qqQgolVyw8LjRhx6l5R44hoJ-IDz2fXpGHiOnWY3xZeOv6mrwbkdJ56Hg3tOjn1kVeL73rGp9-BT6-OsKMcHTRTU3_wqumdQtGOmJ7wbWEx9v3kD3_vnm6vs3uH_7cXV_dZ16qYspSbVOIGsDYUEvhCxucDVBXuUIXKrQqd7bQuV97rU0FeRF0boMxWFe-Dk4dsrNN7hiHvzPSVHYNeWxTfRxmKpUQuQYJtkj09At9G-bYp3YbZZTKIalfG-XjQBQxlGNsOheXUkD5OX6py-34yf7cJs5Vh_V_-W_tBM43gHwzpYGG_pu0D7yOjI4</recordid><startdate>20241014</startdate><enddate>20241014</enddate><creator>Poruthoor, Ashlin J.</creator><creator>Stallone, Jack J.</creator><creator>Miaro, Megan</creator><creator>Sharma, Akshara</creator><creator>Grossfield, Alan</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8910-9920</orcidid><orcidid>https://orcid.org/0000-0003-1715-3639</orcidid><orcidid>https://orcid.org/0000-0002-5877-2789</orcidid><orcidid>https://orcid.org/0000-0001-6211-380X</orcidid><orcidid>https://orcid.org/0000-0003-3952-8884</orcidid></search><sort><creationdate>20241014</creationdate><title>System size effects on the free energy landscapes from molecular dynamics of phase-separating bilayers</title><author>Poruthoor, Ashlin J. ; Stallone, Jack J. ; Miaro, Megan ; Sharma, Akshara ; Grossfield, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-690681d0069fd21c89fa9f0db43eafbe934a9854c7c556b048f549f66edbcdfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cell membranes</topic><topic>Free energy</topic><topic>Lipids</topic><topic>Molecular dynamics</topic><topic>Phase diagrams</topic><topic>Phase separation</topic><topic>Simulation</topic><topic>Size effects</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poruthoor, Ashlin J.</creatorcontrib><creatorcontrib>Stallone, Jack J.</creatorcontrib><creatorcontrib>Miaro, Megan</creatorcontrib><creatorcontrib>Sharma, Akshara</creatorcontrib><creatorcontrib>Grossfield, Alan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poruthoor, Ashlin J.</au><au>Stallone, Jack J.</au><au>Miaro, Megan</au><au>Sharma, Akshara</au><au>Grossfield, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>System size effects on the free energy landscapes from molecular dynamics of phase-separating bilayers</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-10-14</date><risdate>2024</risdate><volume>161</volume><issue>14</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The “lipid raft” hypothesis proposes that cell membranes contain distinct domains of varying lipid compositions, where “rafts” of ordered lipids and cholesterol coexist with disordered lipid regions. Experimental and theoretical phase diagrams of model membranes have revealed multiple coexisting phases. Molecular dynamics (MD) simulations can also capture spontaneous phase separation of bilayers. However, these methods merely determine the sign of the free energy change upon phase separation—whether or not it is favorable—but not the amplitude. Recently, we developed a workflow to compute the free energy of phase separation from MD simulations using the weighted ensemble method. However, while theoretical treatments generally focus on infinite systems and experimental measurements on mesoscopic to macroscopic systems, MD simulations are comparatively small. Therefore, if we are to put the results of these calculations into the appropriate context, we need to understand the effects the finite size of the simulation has on the computed free energy landscapes. In this study, we investigate this phenomenon by computing free energy profiles for a model phase-separating system as a function of system size, ranging from 324 to 10 110 lipids. The results suggest that, within the limits of statistical uncertainty, bulk-like behavior emerges once the systems contain roughly 4000 lipids.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39382132</pmid><doi>10.1063/5.0225753</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8910-9920</orcidid><orcidid>https://orcid.org/0000-0003-1715-3639</orcidid><orcidid>https://orcid.org/0000-0002-5877-2789</orcidid><orcidid>https://orcid.org/0000-0001-6211-380X</orcidid><orcidid>https://orcid.org/0000-0003-3952-8884</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2024-10, Vol.161 (14) |
issn | 0021-9606 1089-7690 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_3114563340 |
source | AIP Journals Complete |
subjects | Cell membranes Free energy Lipids Molecular dynamics Phase diagrams Phase separation Simulation Size effects Workflow |
title | System size effects on the free energy landscapes from molecular dynamics of phase-separating bilayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=System%20size%20effects%20on%20the%20free%20energy%20landscapes%20from%20molecular%20dynamics%20of%20phase-separating%20bilayers&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Poruthoor,%20Ashlin%20J.&rft.date=2024-10-14&rft.volume=161&rft.issue=14&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0225753&rft_dat=%3Cproquest_cross%3E3114502098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114563340&rft_id=info:pmid/39382132&rfr_iscdi=true |