System size effects on the free energy landscapes from molecular dynamics of phase-separating bilayers

The “lipid raft” hypothesis proposes that cell membranes contain distinct domains of varying lipid compositions, where “rafts” of ordered lipids and cholesterol coexist with disordered lipid regions. Experimental and theoretical phase diagrams of model membranes have revealed multiple coexisting pha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2024-10, Vol.161 (14)
Hauptverfasser: Poruthoor, Ashlin J., Stallone, Jack J., Miaro, Megan, Sharma, Akshara, Grossfield, Alan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page
container_title The Journal of chemical physics
container_volume 161
creator Poruthoor, Ashlin J.
Stallone, Jack J.
Miaro, Megan
Sharma, Akshara
Grossfield, Alan
description The “lipid raft” hypothesis proposes that cell membranes contain distinct domains of varying lipid compositions, where “rafts” of ordered lipids and cholesterol coexist with disordered lipid regions. Experimental and theoretical phase diagrams of model membranes have revealed multiple coexisting phases. Molecular dynamics (MD) simulations can also capture spontaneous phase separation of bilayers. However, these methods merely determine the sign of the free energy change upon phase separation—whether or not it is favorable—but not the amplitude. Recently, we developed a workflow to compute the free energy of phase separation from MD simulations using the weighted ensemble method. However, while theoretical treatments generally focus on infinite systems and experimental measurements on mesoscopic to macroscopic systems, MD simulations are comparatively small. Therefore, if we are to put the results of these calculations into the appropriate context, we need to understand the effects the finite size of the simulation has on the computed free energy landscapes. In this study, we investigate this phenomenon by computing free energy profiles for a model phase-separating system as a function of system size, ranging from 324 to 10 110 lipids. The results suggest that, within the limits of statistical uncertainty, bulk-like behavior emerges once the systems contain roughly 4000 lipids.
doi_str_mv 10.1063/5.0225753
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3114563340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114502098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-690681d0069fd21c89fa9f0db43eafbe934a9854c7c556b048f549f66edbcdfa3</originalsourceid><addsrcrecordid>eNp90E9L5TAUBfAgir5RF36BIeDGEao3SZPXLEWcURBcqOuSpjda6b_JbRf10xt5b2bhwlXg8svhcBg7EXAhwKhLfQFS6rVWO2wloLDZ2ljYZSsAKTJrwBywH0RvACDWMt9nB8qqQgolVyw8LjRhx6l5R44hoJ-IDz2fXpGHiOnWY3xZeOv6mrwbkdJ56Hg3tOjn1kVeL73rGp9-BT6-OsKMcHTRTU3_wqumdQtGOmJ7wbWEx9v3kD3_vnm6vs3uH_7cXV_dZ16qYspSbVOIGsDYUEvhCxucDVBXuUIXKrQqd7bQuV97rU0FeRF0boMxWFe-Dk4dsrNN7hiHvzPSVHYNeWxTfRxmKpUQuQYJtkj09At9G-bYp3YbZZTKIalfG-XjQBQxlGNsOheXUkD5OX6py-34yf7cJs5Vh_V_-W_tBM43gHwzpYGG_pu0D7yOjI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114563340</pqid></control><display><type>article</type><title>System size effects on the free energy landscapes from molecular dynamics of phase-separating bilayers</title><source>AIP Journals Complete</source><creator>Poruthoor, Ashlin J. ; Stallone, Jack J. ; Miaro, Megan ; Sharma, Akshara ; Grossfield, Alan</creator><creatorcontrib>Poruthoor, Ashlin J. ; Stallone, Jack J. ; Miaro, Megan ; Sharma, Akshara ; Grossfield, Alan</creatorcontrib><description>The “lipid raft” hypothesis proposes that cell membranes contain distinct domains of varying lipid compositions, where “rafts” of ordered lipids and cholesterol coexist with disordered lipid regions. Experimental and theoretical phase diagrams of model membranes have revealed multiple coexisting phases. Molecular dynamics (MD) simulations can also capture spontaneous phase separation of bilayers. However, these methods merely determine the sign of the free energy change upon phase separation—whether or not it is favorable—but not the amplitude. Recently, we developed a workflow to compute the free energy of phase separation from MD simulations using the weighted ensemble method. However, while theoretical treatments generally focus on infinite systems and experimental measurements on mesoscopic to macroscopic systems, MD simulations are comparatively small. Therefore, if we are to put the results of these calculations into the appropriate context, we need to understand the effects the finite size of the simulation has on the computed free energy landscapes. In this study, we investigate this phenomenon by computing free energy profiles for a model phase-separating system as a function of system size, ranging from 324 to 10 110 lipids. The results suggest that, within the limits of statistical uncertainty, bulk-like behavior emerges once the systems contain roughly 4000 lipids.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0225753</identifier><identifier>PMID: 39382132</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Cell membranes ; Free energy ; Lipids ; Molecular dynamics ; Phase diagrams ; Phase separation ; Simulation ; Size effects ; Workflow</subject><ispartof>The Journal of chemical physics, 2024-10, Vol.161 (14)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-690681d0069fd21c89fa9f0db43eafbe934a9854c7c556b048f549f66edbcdfa3</cites><orcidid>0000-0002-8910-9920 ; 0000-0003-1715-3639 ; 0000-0002-5877-2789 ; 0000-0001-6211-380X ; 0000-0003-3952-8884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0225753$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39382132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poruthoor, Ashlin J.</creatorcontrib><creatorcontrib>Stallone, Jack J.</creatorcontrib><creatorcontrib>Miaro, Megan</creatorcontrib><creatorcontrib>Sharma, Akshara</creatorcontrib><creatorcontrib>Grossfield, Alan</creatorcontrib><title>System size effects on the free energy landscapes from molecular dynamics of phase-separating bilayers</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The “lipid raft” hypothesis proposes that cell membranes contain distinct domains of varying lipid compositions, where “rafts” of ordered lipids and cholesterol coexist with disordered lipid regions. Experimental and theoretical phase diagrams of model membranes have revealed multiple coexisting phases. Molecular dynamics (MD) simulations can also capture spontaneous phase separation of bilayers. However, these methods merely determine the sign of the free energy change upon phase separation—whether or not it is favorable—but not the amplitude. Recently, we developed a workflow to compute the free energy of phase separation from MD simulations using the weighted ensemble method. However, while theoretical treatments generally focus on infinite systems and experimental measurements on mesoscopic to macroscopic systems, MD simulations are comparatively small. Therefore, if we are to put the results of these calculations into the appropriate context, we need to understand the effects the finite size of the simulation has on the computed free energy landscapes. In this study, we investigate this phenomenon by computing free energy profiles for a model phase-separating system as a function of system size, ranging from 324 to 10 110 lipids. The results suggest that, within the limits of statistical uncertainty, bulk-like behavior emerges once the systems contain roughly 4000 lipids.</description><subject>Cell membranes</subject><subject>Free energy</subject><subject>Lipids</subject><subject>Molecular dynamics</subject><subject>Phase diagrams</subject><subject>Phase separation</subject><subject>Simulation</subject><subject>Size effects</subject><subject>Workflow</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E9L5TAUBfAgir5RF36BIeDGEao3SZPXLEWcURBcqOuSpjda6b_JbRf10xt5b2bhwlXg8svhcBg7EXAhwKhLfQFS6rVWO2wloLDZ2ljYZSsAKTJrwBywH0RvACDWMt9nB8qqQgolVyw8LjRhx6l5R44hoJ-IDz2fXpGHiOnWY3xZeOv6mrwbkdJ56Hg3tOjn1kVeL73rGp9-BT6-OsKMcHTRTU3_wqumdQtGOmJ7wbWEx9v3kD3_vnm6vs3uH_7cXV_dZ16qYspSbVOIGsDYUEvhCxucDVBXuUIXKrQqd7bQuV97rU0FeRF0boMxWFe-Dk4dsrNN7hiHvzPSVHYNeWxTfRxmKpUQuQYJtkj09At9G-bYp3YbZZTKIalfG-XjQBQxlGNsOheXUkD5OX6py-34yf7cJs5Vh_V_-W_tBM43gHwzpYGG_pu0D7yOjI4</recordid><startdate>20241014</startdate><enddate>20241014</enddate><creator>Poruthoor, Ashlin J.</creator><creator>Stallone, Jack J.</creator><creator>Miaro, Megan</creator><creator>Sharma, Akshara</creator><creator>Grossfield, Alan</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8910-9920</orcidid><orcidid>https://orcid.org/0000-0003-1715-3639</orcidid><orcidid>https://orcid.org/0000-0002-5877-2789</orcidid><orcidid>https://orcid.org/0000-0001-6211-380X</orcidid><orcidid>https://orcid.org/0000-0003-3952-8884</orcidid></search><sort><creationdate>20241014</creationdate><title>System size effects on the free energy landscapes from molecular dynamics of phase-separating bilayers</title><author>Poruthoor, Ashlin J. ; Stallone, Jack J. ; Miaro, Megan ; Sharma, Akshara ; Grossfield, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-690681d0069fd21c89fa9f0db43eafbe934a9854c7c556b048f549f66edbcdfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cell membranes</topic><topic>Free energy</topic><topic>Lipids</topic><topic>Molecular dynamics</topic><topic>Phase diagrams</topic><topic>Phase separation</topic><topic>Simulation</topic><topic>Size effects</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poruthoor, Ashlin J.</creatorcontrib><creatorcontrib>Stallone, Jack J.</creatorcontrib><creatorcontrib>Miaro, Megan</creatorcontrib><creatorcontrib>Sharma, Akshara</creatorcontrib><creatorcontrib>Grossfield, Alan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poruthoor, Ashlin J.</au><au>Stallone, Jack J.</au><au>Miaro, Megan</au><au>Sharma, Akshara</au><au>Grossfield, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>System size effects on the free energy landscapes from molecular dynamics of phase-separating bilayers</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-10-14</date><risdate>2024</risdate><volume>161</volume><issue>14</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The “lipid raft” hypothesis proposes that cell membranes contain distinct domains of varying lipid compositions, where “rafts” of ordered lipids and cholesterol coexist with disordered lipid regions. Experimental and theoretical phase diagrams of model membranes have revealed multiple coexisting phases. Molecular dynamics (MD) simulations can also capture spontaneous phase separation of bilayers. However, these methods merely determine the sign of the free energy change upon phase separation—whether or not it is favorable—but not the amplitude. Recently, we developed a workflow to compute the free energy of phase separation from MD simulations using the weighted ensemble method. However, while theoretical treatments generally focus on infinite systems and experimental measurements on mesoscopic to macroscopic systems, MD simulations are comparatively small. Therefore, if we are to put the results of these calculations into the appropriate context, we need to understand the effects the finite size of the simulation has on the computed free energy landscapes. In this study, we investigate this phenomenon by computing free energy profiles for a model phase-separating system as a function of system size, ranging from 324 to 10 110 lipids. The results suggest that, within the limits of statistical uncertainty, bulk-like behavior emerges once the systems contain roughly 4000 lipids.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39382132</pmid><doi>10.1063/5.0225753</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8910-9920</orcidid><orcidid>https://orcid.org/0000-0003-1715-3639</orcidid><orcidid>https://orcid.org/0000-0002-5877-2789</orcidid><orcidid>https://orcid.org/0000-0001-6211-380X</orcidid><orcidid>https://orcid.org/0000-0003-3952-8884</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-10, Vol.161 (14)
issn 0021-9606
1089-7690
1089-7690
language eng
recordid cdi_proquest_journals_3114563340
source AIP Journals Complete
subjects Cell membranes
Free energy
Lipids
Molecular dynamics
Phase diagrams
Phase separation
Simulation
Size effects
Workflow
title System size effects on the free energy landscapes from molecular dynamics of phase-separating bilayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=System%20size%20effects%20on%20the%20free%20energy%20landscapes%20from%20molecular%20dynamics%20of%20phase-separating%20bilayers&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Poruthoor,%20Ashlin%20J.&rft.date=2024-10-14&rft.volume=161&rft.issue=14&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0225753&rft_dat=%3Cproquest_cross%3E3114502098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114563340&rft_id=info:pmid/39382132&rfr_iscdi=true