Supercooled Water Cloud Identification From Geostationary Satellite Thermal Infrared Observations and Its Application in the Sun Glint Region
Supercooled water clouds (SWCs) are prevalent in the atmosphere and crucial for global and local radiation balance, aviation safety, and weather modification techniques like artificial precipitation. Therefore, there is an imperative need for the continuous and precise monitoring of SWCs at high tem...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Fu, Haoyang Zhang, Feng Guo, Bin Li, Wenwen |
description | Supercooled water clouds (SWCs) are prevalent in the atmosphere and crucial for global and local radiation balance, aviation safety, and weather modification techniques like artificial precipitation. Therefore, there is an imperative need for the continuous and precise monitoring of SWCs at high temporal and spatial resolution, encompassing observations under all sky conditions. This study aims to enhance the identification of SWCs by leveraging thermal infrared (TIR) channels of the Himawari-8 geostationary satellite, regardless of solar illumination or sun glint effects, which can be problematic for reflectivity bands. Principal component analysis (PCA) is utilized to perform a sensitivity analysis on a dataset comprising TIR bands from the Himawari-8 satellite and labels derived from the Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observation (CALIPSO) cloud profile products, to assess the efficacy of the data in differentiating between supercooled water and ice clouds (ICs). Subsequently, machine learning techniques are employed to develop an all-day SWC identification model. The model is assessed using a time-independent dataset, yielding an overall accuracy rate for cloud phase (CPH) identification of over 90%, as well as high performance for detecting SWCs. The model demonstrates consistent performance across various surfaces, times of day, and seasons. Notably, it outperforms traditional algorithms that rely on reflectivity bands by accurately identifying SWCs even in sun glint regions, thus improving the reliability of CPH detection for applications in meteorology, climate research, and aviation safety. |
doi_str_mv | 10.1109/TGRS.2024.3458052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3114562318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10677343</ieee_id><sourcerecordid>3114562318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-96d874684da9fda018eac6c406b827fb9fc809edc0fdbb2993d16042d4c6bd5b3</originalsourceid><addsrcrecordid>eNpNkM9KAzEQh4MoWP88gOAh4Hlrks1mk6MUrQVBaCsel2wya1e2mzXJCj6E72zaKngaZvjmN8yH0BUlU0qJul3Pl6spI4xPc15IUrAjNKFFITMiOD9GE0KVyJhU7BSdhfBOCOUFLSfoezUO4I1zHVj8qiN4POvcaPHCQh_bpjU6tq7HD95t8RxciPte-y-8SnTXtRHwegN-qzu86BuvfQp6rgP4zz0ZsO5TWgz4bhi6v7i2x3EDeDX2eN61fcRLeEvzC3TS6C7A5W89Ry8P9-vZY_b0PF_M7p4yQ0sRMyWsLLmQ3GrVWE2oBG2E4UTUkpVNrRojiQJrSGPrmimVWyoIZ5YbUduizs_RzSF38O5jhBCrdzf6Pp2scprMCJZTmSh6oIx3IXhoqsG32_R6RUm1s17trFc769Wv9bRzfdhpAeAfL8oy53n-AyxkgU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114562318</pqid></control><display><type>article</type><title>Supercooled Water Cloud Identification From Geostationary Satellite Thermal Infrared Observations and Its Application in the Sun Glint Region</title><source>IEEE Electronic Library (IEL)</source><creator>Fu, Haoyang ; Zhang, Feng ; Guo, Bin ; Li, Wenwen</creator><creatorcontrib>Fu, Haoyang ; Zhang, Feng ; Guo, Bin ; Li, Wenwen</creatorcontrib><description>Supercooled water clouds (SWCs) are prevalent in the atmosphere and crucial for global and local radiation balance, aviation safety, and weather modification techniques like artificial precipitation. Therefore, there is an imperative need for the continuous and precise monitoring of SWCs at high temporal and spatial resolution, encompassing observations under all sky conditions. This study aims to enhance the identification of SWCs by leveraging thermal infrared (TIR) channels of the Himawari-8 geostationary satellite, regardless of solar illumination or sun glint effects, which can be problematic for reflectivity bands. Principal component analysis (PCA) is utilized to perform a sensitivity analysis on a dataset comprising TIR bands from the Himawari-8 satellite and labels derived from the Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observation (CALIPSO) cloud profile products, to assess the efficacy of the data in differentiating between supercooled water and ice clouds (ICs). Subsequently, machine learning techniques are employed to develop an all-day SWC identification model. The model is assessed using a time-independent dataset, yielding an overall accuracy rate for cloud phase (CPH) identification of over 90%, as well as high performance for detecting SWCs. The model demonstrates consistent performance across various surfaces, times of day, and seasons. Notably, it outperforms traditional algorithms that rely on reflectivity bands by accurately identifying SWCs even in sun glint regions, thus improving the reliability of CPH detection for applications in meteorology, climate research, and aviation safety.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3458052</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Air safety ; Aircraft accidents & safety ; Algorithms ; Artificial precipitation ; Atmospheric modeling ; Aviation ; Cloud phase (CPH) ; Clouds ; Datasets ; Glint ; Himawari-8 ; Ice clouds ; Infrared analysis ; Lidar ; Machine learning ; Meteorology ; Ocean temperature ; Principal components analysis ; Radiation balance ; Reflectance ; Satellite broadcasting ; Satellite observation ; Satellites ; Sensitivity analysis ; Sensors ; Spatial discrimination ; Spatial resolution ; supercooled water clouds (SWCs) ; Synchronous satellites ; thermal infrared (TIR) ; Weather modification</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-96d874684da9fda018eac6c406b827fb9fc809edc0fdbb2993d16042d4c6bd5b3</cites><orcidid>0000-0003-2861-1818 ; 0000-0003-2280-5822 ; 0000-0003-4373-4058 ; 0000-0003-3837-1483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10677343$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10677343$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu, Haoyang</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Guo, Bin</creatorcontrib><creatorcontrib>Li, Wenwen</creatorcontrib><title>Supercooled Water Cloud Identification From Geostationary Satellite Thermal Infrared Observations and Its Application in the Sun Glint Region</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Supercooled water clouds (SWCs) are prevalent in the atmosphere and crucial for global and local radiation balance, aviation safety, and weather modification techniques like artificial precipitation. Therefore, there is an imperative need for the continuous and precise monitoring of SWCs at high temporal and spatial resolution, encompassing observations under all sky conditions. This study aims to enhance the identification of SWCs by leveraging thermal infrared (TIR) channels of the Himawari-8 geostationary satellite, regardless of solar illumination or sun glint effects, which can be problematic for reflectivity bands. Principal component analysis (PCA) is utilized to perform a sensitivity analysis on a dataset comprising TIR bands from the Himawari-8 satellite and labels derived from the Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observation (CALIPSO) cloud profile products, to assess the efficacy of the data in differentiating between supercooled water and ice clouds (ICs). Subsequently, machine learning techniques are employed to develop an all-day SWC identification model. The model is assessed using a time-independent dataset, yielding an overall accuracy rate for cloud phase (CPH) identification of over 90%, as well as high performance for detecting SWCs. The model demonstrates consistent performance across various surfaces, times of day, and seasons. Notably, it outperforms traditional algorithms that rely on reflectivity bands by accurately identifying SWCs even in sun glint regions, thus improving the reliability of CPH detection for applications in meteorology, climate research, and aviation safety.</description><subject>Accuracy</subject><subject>Air safety</subject><subject>Aircraft accidents & safety</subject><subject>Algorithms</subject><subject>Artificial precipitation</subject><subject>Atmospheric modeling</subject><subject>Aviation</subject><subject>Cloud phase (CPH)</subject><subject>Clouds</subject><subject>Datasets</subject><subject>Glint</subject><subject>Himawari-8</subject><subject>Ice clouds</subject><subject>Infrared analysis</subject><subject>Lidar</subject><subject>Machine learning</subject><subject>Meteorology</subject><subject>Ocean temperature</subject><subject>Principal components analysis</subject><subject>Radiation balance</subject><subject>Reflectance</subject><subject>Satellite broadcasting</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>supercooled water clouds (SWCs)</subject><subject>Synchronous satellites</subject><subject>thermal infrared (TIR)</subject><subject>Weather modification</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9KAzEQh4MoWP88gOAh4Hlrks1mk6MUrQVBaCsel2wya1e2mzXJCj6E72zaKngaZvjmN8yH0BUlU0qJul3Pl6spI4xPc15IUrAjNKFFITMiOD9GE0KVyJhU7BSdhfBOCOUFLSfoezUO4I1zHVj8qiN4POvcaPHCQh_bpjU6tq7HD95t8RxciPte-y-8SnTXtRHwegN-qzu86BuvfQp6rgP4zz0ZsO5TWgz4bhi6v7i2x3EDeDX2eN61fcRLeEvzC3TS6C7A5W89Ry8P9-vZY_b0PF_M7p4yQ0sRMyWsLLmQ3GrVWE2oBG2E4UTUkpVNrRojiQJrSGPrmimVWyoIZ5YbUduizs_RzSF38O5jhBCrdzf6Pp2scprMCJZTmSh6oIx3IXhoqsG32_R6RUm1s17trFc769Wv9bRzfdhpAeAfL8oy53n-AyxkgU0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Fu, Haoyang</creator><creator>Zhang, Feng</creator><creator>Guo, Bin</creator><creator>Li, Wenwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2861-1818</orcidid><orcidid>https://orcid.org/0000-0003-2280-5822</orcidid><orcidid>https://orcid.org/0000-0003-4373-4058</orcidid><orcidid>https://orcid.org/0000-0003-3837-1483</orcidid></search><sort><creationdate>2024</creationdate><title>Supercooled Water Cloud Identification From Geostationary Satellite Thermal Infrared Observations and Its Application in the Sun Glint Region</title><author>Fu, Haoyang ; Zhang, Feng ; Guo, Bin ; Li, Wenwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-96d874684da9fda018eac6c406b827fb9fc809edc0fdbb2993d16042d4c6bd5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Air safety</topic><topic>Aircraft accidents & safety</topic><topic>Algorithms</topic><topic>Artificial precipitation</topic><topic>Atmospheric modeling</topic><topic>Aviation</topic><topic>Cloud phase (CPH)</topic><topic>Clouds</topic><topic>Datasets</topic><topic>Glint</topic><topic>Himawari-8</topic><topic>Ice clouds</topic><topic>Infrared analysis</topic><topic>Lidar</topic><topic>Machine learning</topic><topic>Meteorology</topic><topic>Ocean temperature</topic><topic>Principal components analysis</topic><topic>Radiation balance</topic><topic>Reflectance</topic><topic>Satellite broadcasting</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>supercooled water clouds (SWCs)</topic><topic>Synchronous satellites</topic><topic>thermal infrared (TIR)</topic><topic>Weather modification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Haoyang</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Guo, Bin</creatorcontrib><creatorcontrib>Li, Wenwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, Haoyang</au><au>Zhang, Feng</au><au>Guo, Bin</au><au>Li, Wenwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supercooled Water Cloud Identification From Geostationary Satellite Thermal Infrared Observations and Its Application in the Sun Glint Region</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Supercooled water clouds (SWCs) are prevalent in the atmosphere and crucial for global and local radiation balance, aviation safety, and weather modification techniques like artificial precipitation. Therefore, there is an imperative need for the continuous and precise monitoring of SWCs at high temporal and spatial resolution, encompassing observations under all sky conditions. This study aims to enhance the identification of SWCs by leveraging thermal infrared (TIR) channels of the Himawari-8 geostationary satellite, regardless of solar illumination or sun glint effects, which can be problematic for reflectivity bands. Principal component analysis (PCA) is utilized to perform a sensitivity analysis on a dataset comprising TIR bands from the Himawari-8 satellite and labels derived from the Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observation (CALIPSO) cloud profile products, to assess the efficacy of the data in differentiating between supercooled water and ice clouds (ICs). Subsequently, machine learning techniques are employed to develop an all-day SWC identification model. The model is assessed using a time-independent dataset, yielding an overall accuracy rate for cloud phase (CPH) identification of over 90%, as well as high performance for detecting SWCs. The model demonstrates consistent performance across various surfaces, times of day, and seasons. Notably, it outperforms traditional algorithms that rely on reflectivity bands by accurately identifying SWCs even in sun glint regions, thus improving the reliability of CPH detection for applications in meteorology, climate research, and aviation safety.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3458052</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2861-1818</orcidid><orcidid>https://orcid.org/0000-0003-2280-5822</orcidid><orcidid>https://orcid.org/0000-0003-4373-4058</orcidid><orcidid>https://orcid.org/0000-0003-3837-1483</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-10 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_3114562318 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Air safety Aircraft accidents & safety Algorithms Artificial precipitation Atmospheric modeling Aviation Cloud phase (CPH) Clouds Datasets Glint Himawari-8 Ice clouds Infrared analysis Lidar Machine learning Meteorology Ocean temperature Principal components analysis Radiation balance Reflectance Satellite broadcasting Satellite observation Satellites Sensitivity analysis Sensors Spatial discrimination Spatial resolution supercooled water clouds (SWCs) Synchronous satellites thermal infrared (TIR) Weather modification |
title | Supercooled Water Cloud Identification From Geostationary Satellite Thermal Infrared Observations and Its Application in the Sun Glint Region |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supercooled%20Water%20Cloud%20Identification%20From%20Geostationary%20Satellite%20Thermal%20Infrared%20Observations%20and%20Its%20Application%20in%20the%20Sun%20Glint%20Region&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Fu,%20Haoyang&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3458052&rft_dat=%3Cproquest_RIE%3E3114562318%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114562318&rft_id=info:pmid/&rft_ieee_id=10677343&rfr_iscdi=true |