Supercooled Water Cloud Identification From Geostationary Satellite Thermal Infrared Observations and Its Application in the Sun Glint Region

Supercooled water clouds (SWCs) are prevalent in the atmosphere and crucial for global and local radiation balance, aviation safety, and weather modification techniques like artificial precipitation. Therefore, there is an imperative need for the continuous and precise monitoring of SWCs at high tem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-10
Hauptverfasser: Fu, Haoyang, Zhang, Feng, Guo, Bin, Li, Wenwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Fu, Haoyang
Zhang, Feng
Guo, Bin
Li, Wenwen
description Supercooled water clouds (SWCs) are prevalent in the atmosphere and crucial for global and local radiation balance, aviation safety, and weather modification techniques like artificial precipitation. Therefore, there is an imperative need for the continuous and precise monitoring of SWCs at high temporal and spatial resolution, encompassing observations under all sky conditions. This study aims to enhance the identification of SWCs by leveraging thermal infrared (TIR) channels of the Himawari-8 geostationary satellite, regardless of solar illumination or sun glint effects, which can be problematic for reflectivity bands. Principal component analysis (PCA) is utilized to perform a sensitivity analysis on a dataset comprising TIR bands from the Himawari-8 satellite and labels derived from the Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observation (CALIPSO) cloud profile products, to assess the efficacy of the data in differentiating between supercooled water and ice clouds (ICs). Subsequently, machine learning techniques are employed to develop an all-day SWC identification model. The model is assessed using a time-independent dataset, yielding an overall accuracy rate for cloud phase (CPH) identification of over 90%, as well as high performance for detecting SWCs. The model demonstrates consistent performance across various surfaces, times of day, and seasons. Notably, it outperforms traditional algorithms that rely on reflectivity bands by accurately identifying SWCs even in sun glint regions, thus improving the reliability of CPH detection for applications in meteorology, climate research, and aviation safety.
doi_str_mv 10.1109/TGRS.2024.3458052
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3114562318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10677343</ieee_id><sourcerecordid>3114562318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-96d874684da9fda018eac6c406b827fb9fc809edc0fdbb2993d16042d4c6bd5b3</originalsourceid><addsrcrecordid>eNpNkM9KAzEQh4MoWP88gOAh4Hlrks1mk6MUrQVBaCsel2wya1e2mzXJCj6E72zaKngaZvjmN8yH0BUlU0qJul3Pl6spI4xPc15IUrAjNKFFITMiOD9GE0KVyJhU7BSdhfBOCOUFLSfoezUO4I1zHVj8qiN4POvcaPHCQh_bpjU6tq7HD95t8RxciPte-y-8SnTXtRHwegN-qzu86BuvfQp6rgP4zz0ZsO5TWgz4bhi6v7i2x3EDeDX2eN61fcRLeEvzC3TS6C7A5W89Ry8P9-vZY_b0PF_M7p4yQ0sRMyWsLLmQ3GrVWE2oBG2E4UTUkpVNrRojiQJrSGPrmimVWyoIZ5YbUduizs_RzSF38O5jhBCrdzf6Pp2scprMCJZTmSh6oIx3IXhoqsG32_R6RUm1s17trFc769Wv9bRzfdhpAeAfL8oy53n-AyxkgU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114562318</pqid></control><display><type>article</type><title>Supercooled Water Cloud Identification From Geostationary Satellite Thermal Infrared Observations and Its Application in the Sun Glint Region</title><source>IEEE Electronic Library (IEL)</source><creator>Fu, Haoyang ; Zhang, Feng ; Guo, Bin ; Li, Wenwen</creator><creatorcontrib>Fu, Haoyang ; Zhang, Feng ; Guo, Bin ; Li, Wenwen</creatorcontrib><description>Supercooled water clouds (SWCs) are prevalent in the atmosphere and crucial for global and local radiation balance, aviation safety, and weather modification techniques like artificial precipitation. Therefore, there is an imperative need for the continuous and precise monitoring of SWCs at high temporal and spatial resolution, encompassing observations under all sky conditions. This study aims to enhance the identification of SWCs by leveraging thermal infrared (TIR) channels of the Himawari-8 geostationary satellite, regardless of solar illumination or sun glint effects, which can be problematic for reflectivity bands. Principal component analysis (PCA) is utilized to perform a sensitivity analysis on a dataset comprising TIR bands from the Himawari-8 satellite and labels derived from the Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observation (CALIPSO) cloud profile products, to assess the efficacy of the data in differentiating between supercooled water and ice clouds (ICs). Subsequently, machine learning techniques are employed to develop an all-day SWC identification model. The model is assessed using a time-independent dataset, yielding an overall accuracy rate for cloud phase (CPH) identification of over 90%, as well as high performance for detecting SWCs. The model demonstrates consistent performance across various surfaces, times of day, and seasons. Notably, it outperforms traditional algorithms that rely on reflectivity bands by accurately identifying SWCs even in sun glint regions, thus improving the reliability of CPH detection for applications in meteorology, climate research, and aviation safety.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3458052</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Air safety ; Aircraft accidents &amp; safety ; Algorithms ; Artificial precipitation ; Atmospheric modeling ; Aviation ; Cloud phase (CPH) ; Clouds ; Datasets ; Glint ; Himawari-8 ; Ice clouds ; Infrared analysis ; Lidar ; Machine learning ; Meteorology ; Ocean temperature ; Principal components analysis ; Radiation balance ; Reflectance ; Satellite broadcasting ; Satellite observation ; Satellites ; Sensitivity analysis ; Sensors ; Spatial discrimination ; Spatial resolution ; supercooled water clouds (SWCs) ; Synchronous satellites ; thermal infrared (TIR) ; Weather modification</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-96d874684da9fda018eac6c406b827fb9fc809edc0fdbb2993d16042d4c6bd5b3</cites><orcidid>0000-0003-2861-1818 ; 0000-0003-2280-5822 ; 0000-0003-4373-4058 ; 0000-0003-3837-1483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10677343$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10677343$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu, Haoyang</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Guo, Bin</creatorcontrib><creatorcontrib>Li, Wenwen</creatorcontrib><title>Supercooled Water Cloud Identification From Geostationary Satellite Thermal Infrared Observations and Its Application in the Sun Glint Region</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Supercooled water clouds (SWCs) are prevalent in the atmosphere and crucial for global and local radiation balance, aviation safety, and weather modification techniques like artificial precipitation. Therefore, there is an imperative need for the continuous and precise monitoring of SWCs at high temporal and spatial resolution, encompassing observations under all sky conditions. This study aims to enhance the identification of SWCs by leveraging thermal infrared (TIR) channels of the Himawari-8 geostationary satellite, regardless of solar illumination or sun glint effects, which can be problematic for reflectivity bands. Principal component analysis (PCA) is utilized to perform a sensitivity analysis on a dataset comprising TIR bands from the Himawari-8 satellite and labels derived from the Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observation (CALIPSO) cloud profile products, to assess the efficacy of the data in differentiating between supercooled water and ice clouds (ICs). Subsequently, machine learning techniques are employed to develop an all-day SWC identification model. The model is assessed using a time-independent dataset, yielding an overall accuracy rate for cloud phase (CPH) identification of over 90%, as well as high performance for detecting SWCs. The model demonstrates consistent performance across various surfaces, times of day, and seasons. Notably, it outperforms traditional algorithms that rely on reflectivity bands by accurately identifying SWCs even in sun glint regions, thus improving the reliability of CPH detection for applications in meteorology, climate research, and aviation safety.</description><subject>Accuracy</subject><subject>Air safety</subject><subject>Aircraft accidents &amp; safety</subject><subject>Algorithms</subject><subject>Artificial precipitation</subject><subject>Atmospheric modeling</subject><subject>Aviation</subject><subject>Cloud phase (CPH)</subject><subject>Clouds</subject><subject>Datasets</subject><subject>Glint</subject><subject>Himawari-8</subject><subject>Ice clouds</subject><subject>Infrared analysis</subject><subject>Lidar</subject><subject>Machine learning</subject><subject>Meteorology</subject><subject>Ocean temperature</subject><subject>Principal components analysis</subject><subject>Radiation balance</subject><subject>Reflectance</subject><subject>Satellite broadcasting</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>supercooled water clouds (SWCs)</subject><subject>Synchronous satellites</subject><subject>thermal infrared (TIR)</subject><subject>Weather modification</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9KAzEQh4MoWP88gOAh4Hlrks1mk6MUrQVBaCsel2wya1e2mzXJCj6E72zaKngaZvjmN8yH0BUlU0qJul3Pl6spI4xPc15IUrAjNKFFITMiOD9GE0KVyJhU7BSdhfBOCOUFLSfoezUO4I1zHVj8qiN4POvcaPHCQh_bpjU6tq7HD95t8RxciPte-y-8SnTXtRHwegN-qzu86BuvfQp6rgP4zz0ZsO5TWgz4bhi6v7i2x3EDeDX2eN61fcRLeEvzC3TS6C7A5W89Ry8P9-vZY_b0PF_M7p4yQ0sRMyWsLLmQ3GrVWE2oBG2E4UTUkpVNrRojiQJrSGPrmimVWyoIZ5YbUduizs_RzSF38O5jhBCrdzf6Pp2scprMCJZTmSh6oIx3IXhoqsG32_R6RUm1s17trFc769Wv9bRzfdhpAeAfL8oy53n-AyxkgU0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Fu, Haoyang</creator><creator>Zhang, Feng</creator><creator>Guo, Bin</creator><creator>Li, Wenwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2861-1818</orcidid><orcidid>https://orcid.org/0000-0003-2280-5822</orcidid><orcidid>https://orcid.org/0000-0003-4373-4058</orcidid><orcidid>https://orcid.org/0000-0003-3837-1483</orcidid></search><sort><creationdate>2024</creationdate><title>Supercooled Water Cloud Identification From Geostationary Satellite Thermal Infrared Observations and Its Application in the Sun Glint Region</title><author>Fu, Haoyang ; Zhang, Feng ; Guo, Bin ; Li, Wenwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-96d874684da9fda018eac6c406b827fb9fc809edc0fdbb2993d16042d4c6bd5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Air safety</topic><topic>Aircraft accidents &amp; safety</topic><topic>Algorithms</topic><topic>Artificial precipitation</topic><topic>Atmospheric modeling</topic><topic>Aviation</topic><topic>Cloud phase (CPH)</topic><topic>Clouds</topic><topic>Datasets</topic><topic>Glint</topic><topic>Himawari-8</topic><topic>Ice clouds</topic><topic>Infrared analysis</topic><topic>Lidar</topic><topic>Machine learning</topic><topic>Meteorology</topic><topic>Ocean temperature</topic><topic>Principal components analysis</topic><topic>Radiation balance</topic><topic>Reflectance</topic><topic>Satellite broadcasting</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>supercooled water clouds (SWCs)</topic><topic>Synchronous satellites</topic><topic>thermal infrared (TIR)</topic><topic>Weather modification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Haoyang</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Guo, Bin</creatorcontrib><creatorcontrib>Li, Wenwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, Haoyang</au><au>Zhang, Feng</au><au>Guo, Bin</au><au>Li, Wenwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supercooled Water Cloud Identification From Geostationary Satellite Thermal Infrared Observations and Its Application in the Sun Glint Region</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Supercooled water clouds (SWCs) are prevalent in the atmosphere and crucial for global and local radiation balance, aviation safety, and weather modification techniques like artificial precipitation. Therefore, there is an imperative need for the continuous and precise monitoring of SWCs at high temporal and spatial resolution, encompassing observations under all sky conditions. This study aims to enhance the identification of SWCs by leveraging thermal infrared (TIR) channels of the Himawari-8 geostationary satellite, regardless of solar illumination or sun glint effects, which can be problematic for reflectivity bands. Principal component analysis (PCA) is utilized to perform a sensitivity analysis on a dataset comprising TIR bands from the Himawari-8 satellite and labels derived from the Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observation (CALIPSO) cloud profile products, to assess the efficacy of the data in differentiating between supercooled water and ice clouds (ICs). Subsequently, machine learning techniques are employed to develop an all-day SWC identification model. The model is assessed using a time-independent dataset, yielding an overall accuracy rate for cloud phase (CPH) identification of over 90%, as well as high performance for detecting SWCs. The model demonstrates consistent performance across various surfaces, times of day, and seasons. Notably, it outperforms traditional algorithms that rely on reflectivity bands by accurately identifying SWCs even in sun glint regions, thus improving the reliability of CPH detection for applications in meteorology, climate research, and aviation safety.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3458052</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2861-1818</orcidid><orcidid>https://orcid.org/0000-0003-2280-5822</orcidid><orcidid>https://orcid.org/0000-0003-4373-4058</orcidid><orcidid>https://orcid.org/0000-0003-3837-1483</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-10
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_3114562318
source IEEE Electronic Library (IEL)
subjects Accuracy
Air safety
Aircraft accidents & safety
Algorithms
Artificial precipitation
Atmospheric modeling
Aviation
Cloud phase (CPH)
Clouds
Datasets
Glint
Himawari-8
Ice clouds
Infrared analysis
Lidar
Machine learning
Meteorology
Ocean temperature
Principal components analysis
Radiation balance
Reflectance
Satellite broadcasting
Satellite observation
Satellites
Sensitivity analysis
Sensors
Spatial discrimination
Spatial resolution
supercooled water clouds (SWCs)
Synchronous satellites
thermal infrared (TIR)
Weather modification
title Supercooled Water Cloud Identification From Geostationary Satellite Thermal Infrared Observations and Its Application in the Sun Glint Region
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supercooled%20Water%20Cloud%20Identification%20From%20Geostationary%20Satellite%20Thermal%20Infrared%20Observations%20and%20Its%20Application%20in%20the%20Sun%20Glint%20Region&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Fu,%20Haoyang&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3458052&rft_dat=%3Cproquest_RIE%3E3114562318%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114562318&rft_id=info:pmid/&rft_ieee_id=10677343&rfr_iscdi=true