Graph Convolutional Network With Relaxed Collaborative Representation for Hyperspectral Image Classification

Graph convolutional networks (GCNs) have been skillfully employed in hyperspectral image (HSI) classification, exhibiting remarkable performance owing to their unique superiority in handling non-Euclidean graph-structured data. However, the inherent absence of predefined connections between pixels i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-13
Hauptverfasser: Zheng, Hengyi, Su, Hongjun, Wu, Zhaoyue, Paoletti, Mercedes E., Du, Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Zheng, Hengyi
Su, Hongjun
Wu, Zhaoyue
Paoletti, Mercedes E.
Du, Qian
description Graph convolutional networks (GCNs) have been skillfully employed in hyperspectral image (HSI) classification, exhibiting remarkable performance owing to their unique superiority in handling non-Euclidean graph-structured data. However, the inherent absence of predefined connections between pixels in HSI results in the underutilization of the structural and attribute information of the graph edges. Furthermore, the construction of adjacency matrices for large-scale HSI data imposes a huge computational burden on traditional GCNs. Therefore, in this article, a novel method combining relaxed collaborative representation (RCR) and GCN (RCR-GCN) for hyperspectral classification is proposed. Specifically, RCR is adopted to compute the representation coefficients of each feature, reflecting the similarity and diversity among different sample features. Meanwhile, the representation coefficients are applied as edge attributes in the graph, denoting the weights of the connections between neighboring nodes. After that, GCN is employed to classify the graph nodes. Moreover, an efficient version of the RCR-GCN method is developed to boost the computation, which constructs the graph based on superpixel nodes instead of the pixel nodes by using simple linear iterative clustering (SLIC). Extensive experiments on three HSI image datasets demonstrate that the proposed method outperforms other state-of-the-art methods and achieves more efficiency and feasibility in HSI image classification.
doi_str_mv 10.1109/TGRS.2024.3468269
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3114561887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10693598</ieee_id><sourcerecordid>3114561887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-ca8eda3e38b15a95bc137860125b90563af1c7f584b71bb64720ba60d9b2c6db3</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOKcPIHhR8Lozp2nS9FKGboOhMCdehqQ9dZ3ZUpNuure3dV54deCc7__hfIRcAx0B0PxuOVm8jBKapCOWCpmI_IQMgHMZU5Gmp2RAIRdxIvPknFyEsKYUUg7ZgNiJ180qGrvt3tldW7utttETtl_Of0RvdbuKFmj1N5YdYq02zuu23mO3bTwG3La6z0SV89H00KAPDRat7zpmG_2O0djqEOqqLn6xS3JWaRvw6m8Oyevjw3I8jefPk9n4fh4XkIk2LrTEUjNk0gDXOTcFsEwKCgk3OeWC6QqKrOIyNRkYI9IsoUYLWuYmKURp2JDcHnsb7z53GFq1djvffRYUg-5xAVJmHQVHqvAuBI-Vany90f6ggKpequqlql6q-pPaZW6OmRoR__HdieeS_QBQVHV5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114561887</pqid></control><display><type>article</type><title>Graph Convolutional Network With Relaxed Collaborative Representation for Hyperspectral Image Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Hengyi ; Su, Hongjun ; Wu, Zhaoyue ; Paoletti, Mercedes E. ; Du, Qian</creator><creatorcontrib>Zheng, Hengyi ; Su, Hongjun ; Wu, Zhaoyue ; Paoletti, Mercedes E. ; Du, Qian</creatorcontrib><description>Graph convolutional networks (GCNs) have been skillfully employed in hyperspectral image (HSI) classification, exhibiting remarkable performance owing to their unique superiority in handling non-Euclidean graph-structured data. However, the inherent absence of predefined connections between pixels in HSI results in the underutilization of the structural and attribute information of the graph edges. Furthermore, the construction of adjacency matrices for large-scale HSI data imposes a huge computational burden on traditional GCNs. Therefore, in this article, a novel method combining relaxed collaborative representation (RCR) and GCN (RCR-GCN) for hyperspectral classification is proposed. Specifically, RCR is adopted to compute the representation coefficients of each feature, reflecting the similarity and diversity among different sample features. Meanwhile, the representation coefficients are applied as edge attributes in the graph, denoting the weights of the connections between neighboring nodes. After that, GCN is employed to classify the graph nodes. Moreover, an efficient version of the RCR-GCN method is developed to boost the computation, which constructs the graph based on superpixel nodes instead of the pixel nodes by using simple linear iterative clustering (SLIC). Extensive experiments on three HSI image datasets demonstrate that the proposed method outperforms other state-of-the-art methods and achieves more efficiency and feasibility in HSI image classification.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3468269</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Classification ; Clustering ; Collaboration ; Computation ; Convolution ; Deep learning ; Dictionaries ; Feature extraction ; Graph convolutional network (GCN) ; Graph convolutional networks ; Graph theory ; Graphical representations ; hyperspectral classification ; Hyperspectral imaging ; Image classification ; Nodes ; Pixels ; relaxed collaborative representation (RCR) ; simple linear iterative clustering (SLIC) ; Structured data ; superpixel segmentation ; Testing</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-ca8eda3e38b15a95bc137860125b90563af1c7f584b71bb64720ba60d9b2c6db3</cites><orcidid>0000-0002-6797-2440 ; 0009-0002-0753-4913 ; 0000-0001-8354-7500 ; 0000-0002-8991-8568 ; 0000-0003-1030-3729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10693598$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10693598$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Hengyi</creatorcontrib><creatorcontrib>Su, Hongjun</creatorcontrib><creatorcontrib>Wu, Zhaoyue</creatorcontrib><creatorcontrib>Paoletti, Mercedes E.</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><title>Graph Convolutional Network With Relaxed Collaborative Representation for Hyperspectral Image Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Graph convolutional networks (GCNs) have been skillfully employed in hyperspectral image (HSI) classification, exhibiting remarkable performance owing to their unique superiority in handling non-Euclidean graph-structured data. However, the inherent absence of predefined connections between pixels in HSI results in the underutilization of the structural and attribute information of the graph edges. Furthermore, the construction of adjacency matrices for large-scale HSI data imposes a huge computational burden on traditional GCNs. Therefore, in this article, a novel method combining relaxed collaborative representation (RCR) and GCN (RCR-GCN) for hyperspectral classification is proposed. Specifically, RCR is adopted to compute the representation coefficients of each feature, reflecting the similarity and diversity among different sample features. Meanwhile, the representation coefficients are applied as edge attributes in the graph, denoting the weights of the connections between neighboring nodes. After that, GCN is employed to classify the graph nodes. Moreover, an efficient version of the RCR-GCN method is developed to boost the computation, which constructs the graph based on superpixel nodes instead of the pixel nodes by using simple linear iterative clustering (SLIC). Extensive experiments on three HSI image datasets demonstrate that the proposed method outperforms other state-of-the-art methods and achieves more efficiency and feasibility in HSI image classification.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Clustering</subject><subject>Collaboration</subject><subject>Computation</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Dictionaries</subject><subject>Feature extraction</subject><subject>Graph convolutional network (GCN)</subject><subject>Graph convolutional networks</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>hyperspectral classification</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Nodes</subject><subject>Pixels</subject><subject>relaxed collaborative representation (RCR)</subject><subject>simple linear iterative clustering (SLIC)</subject><subject>Structured data</subject><subject>superpixel segmentation</subject><subject>Testing</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFKwzAUhoMoOKcPIHhR8Lozp2nS9FKGboOhMCdehqQ9dZ3ZUpNuure3dV54deCc7__hfIRcAx0B0PxuOVm8jBKapCOWCpmI_IQMgHMZU5Gmp2RAIRdxIvPknFyEsKYUUg7ZgNiJ180qGrvt3tldW7utttETtl_Of0RvdbuKFmj1N5YdYq02zuu23mO3bTwG3La6z0SV89H00KAPDRat7zpmG_2O0djqEOqqLn6xS3JWaRvw6m8Oyevjw3I8jefPk9n4fh4XkIk2LrTEUjNk0gDXOTcFsEwKCgk3OeWC6QqKrOIyNRkYI9IsoUYLWuYmKURp2JDcHnsb7z53GFq1djvffRYUg-5xAVJmHQVHqvAuBI-Vany90f6ggKpequqlql6q-pPaZW6OmRoR__HdieeS_QBQVHV5</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zheng, Hengyi</creator><creator>Su, Hongjun</creator><creator>Wu, Zhaoyue</creator><creator>Paoletti, Mercedes E.</creator><creator>Du, Qian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6797-2440</orcidid><orcidid>https://orcid.org/0009-0002-0753-4913</orcidid><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid><orcidid>https://orcid.org/0000-0002-8991-8568</orcidid><orcidid>https://orcid.org/0000-0003-1030-3729</orcidid></search><sort><creationdate>2024</creationdate><title>Graph Convolutional Network With Relaxed Collaborative Representation for Hyperspectral Image Classification</title><author>Zheng, Hengyi ; Su, Hongjun ; Wu, Zhaoyue ; Paoletti, Mercedes E. ; Du, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-ca8eda3e38b15a95bc137860125b90563af1c7f584b71bb64720ba60d9b2c6db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Clustering</topic><topic>Collaboration</topic><topic>Computation</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Dictionaries</topic><topic>Feature extraction</topic><topic>Graph convolutional network (GCN)</topic><topic>Graph convolutional networks</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>hyperspectral classification</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Nodes</topic><topic>Pixels</topic><topic>relaxed collaborative representation (RCR)</topic><topic>simple linear iterative clustering (SLIC)</topic><topic>Structured data</topic><topic>superpixel segmentation</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Hengyi</creatorcontrib><creatorcontrib>Su, Hongjun</creatorcontrib><creatorcontrib>Wu, Zhaoyue</creatorcontrib><creatorcontrib>Paoletti, Mercedes E.</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Hengyi</au><au>Su, Hongjun</au><au>Wu, Zhaoyue</au><au>Paoletti, Mercedes E.</au><au>Du, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph Convolutional Network With Relaxed Collaborative Representation for Hyperspectral Image Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Graph convolutional networks (GCNs) have been skillfully employed in hyperspectral image (HSI) classification, exhibiting remarkable performance owing to their unique superiority in handling non-Euclidean graph-structured data. However, the inherent absence of predefined connections between pixels in HSI results in the underutilization of the structural and attribute information of the graph edges. Furthermore, the construction of adjacency matrices for large-scale HSI data imposes a huge computational burden on traditional GCNs. Therefore, in this article, a novel method combining relaxed collaborative representation (RCR) and GCN (RCR-GCN) for hyperspectral classification is proposed. Specifically, RCR is adopted to compute the representation coefficients of each feature, reflecting the similarity and diversity among different sample features. Meanwhile, the representation coefficients are applied as edge attributes in the graph, denoting the weights of the connections between neighboring nodes. After that, GCN is employed to classify the graph nodes. Moreover, an efficient version of the RCR-GCN method is developed to boost the computation, which constructs the graph based on superpixel nodes instead of the pixel nodes by using simple linear iterative clustering (SLIC). Extensive experiments on three HSI image datasets demonstrate that the proposed method outperforms other state-of-the-art methods and achieves more efficiency and feasibility in HSI image classification.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3468269</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6797-2440</orcidid><orcidid>https://orcid.org/0009-0002-0753-4913</orcidid><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid><orcidid>https://orcid.org/0000-0002-8991-8568</orcidid><orcidid>https://orcid.org/0000-0003-1030-3729</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_3114561887
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Classification
Clustering
Collaboration
Computation
Convolution
Deep learning
Dictionaries
Feature extraction
Graph convolutional network (GCN)
Graph convolutional networks
Graph theory
Graphical representations
hyperspectral classification
Hyperspectral imaging
Image classification
Nodes
Pixels
relaxed collaborative representation (RCR)
simple linear iterative clustering (SLIC)
Structured data
superpixel segmentation
Testing
title Graph Convolutional Network With Relaxed Collaborative Representation for Hyperspectral Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20Convolutional%20Network%20With%20Relaxed%20Collaborative%20Representation%20for%20Hyperspectral%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zheng,%20Hengyi&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3468269&rft_dat=%3Cproquest_RIE%3E3114561887%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114561887&rft_id=info:pmid/&rft_ieee_id=10693598&rfr_iscdi=true