EFAM-Net: A Multi-Class Skin Lesion Classification Model Utilizing Enhanced Feature Fusion and Attention Mechanisms
Skin cancer caused by common malignant tumors is a major threat to the health of patients. Automated classification of skin lesions using computer algorithms is crucial for enhancing diagnostic efficiency and reducing mortality rates associated with skin cancer. Enhancing the capabilities of image c...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.143029-143041 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143041 |
---|---|
container_issue | |
container_start_page | 143029 |
container_title | IEEE access |
container_volume | 12 |
creator | Ji, Zhanlin Wang, Xuan Liu, Chunling Wang, Zhiwu Yuan, Na Ganchev, Ivan |
description | Skin cancer caused by common malignant tumors is a major threat to the health of patients. Automated classification of skin lesions using computer algorithms is crucial for enhancing diagnostic efficiency and reducing mortality rates associated with skin cancer. Enhancing the capabilities of image classification models for skin lesions is essential to assist in accurately classifying skin diseases of patients. Aiming at this goal, a novel EFAM-Net model is proposed in this paper for the skin lesion classification task. Firstly, a newly designed Attention Residual Learning ConvNeXt (ARLC) block is used to extract low-level features such as colors and textures in images. Then, the deep-layer blocks of the network are replaced with a newly designed Parallel ConvNeXt (PCNXt) block, allowing to capture richer and more complex features. Additionally, another newly designed Multi-scale Efficient Attention Feature Fusion (MEAFF) block enhances feature extraction at various scales, allowing the model to effectively capture more comprehensive features in specific layers, fuse feature maps of different scales and enhance feature reuse at the end. EFAM-Net is experimentally evaluated on the ISIC 2019 and HAM10000 public datasets, as well as on a private dataset. The obtained results show that EFAM-Net achieves top classification performance among all compared models, by achieving overall accuracy of 92.30%, 93.95%, and 94.31% on the ISIC 2019, HAM10000, and private dataset, respectively. |
doi_str_mv | 10.1109/ACCESS.2024.3468612 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3114560686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10695064</ieee_id><doaj_id>oai_doaj_org_article_58be92bcb7de46f097b5d1ff5c3a52ec</doaj_id><sourcerecordid>3114560686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-848150dbd8fca5478af75beb569b564e9c9b67a72ffd2795114cfce70726f4c13</originalsourceid><addsrcrecordid>eNpNUU1v1DAUjBBIVG1_ARwscc5iO_6IuUXRLlTahcPSs-XYz8VLmhTbOcCvx7upqlqy_N5oZt6Tp6o-ELwhBKvPXd9vj8cNxZRtGiZaQeib6ooSoeqGN-Ltq_p9dZvSCZfTFojLqyptd92h_g75C-rQYRlzqPvRpISOv8OE9pDCPKELEnywJp_bw-xgRPc5jOFfmB7QdvplJgsO7cDkJQLaLReZmRzqcoZpVYEttJAe0031zpsxwe3ze13d77Y_-2_1_sfXu77b15a2KtctawnHbnCtt4Yz2Rov-QADF6pcBsqqQUgjqfeOSsUJYdZbkFhS4ZklzXV1t_q62Zz0UwyPJv7Vswn6AszxQZuYgx1B83YARQc7SAdMeKzkwB3xntvGcAq2eH1avZ7i_GeBlPVpXuJU1tdNGcwFLh9fWM3KsnFOKYJ_mUqwPoel17D0OSz9HFZRfVxVAQBeKUpCWLDmP51ykMQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114560686</pqid></control><display><type>article</type><title>EFAM-Net: A Multi-Class Skin Lesion Classification Model Utilizing Enhanced Feature Fusion and Attention Mechanisms</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ji, Zhanlin ; Wang, Xuan ; Liu, Chunling ; Wang, Zhiwu ; Yuan, Na ; Ganchev, Ivan</creator><creatorcontrib>Ji, Zhanlin ; Wang, Xuan ; Liu, Chunling ; Wang, Zhiwu ; Yuan, Na ; Ganchev, Ivan</creatorcontrib><description>Skin cancer caused by common malignant tumors is a major threat to the health of patients. Automated classification of skin lesions using computer algorithms is crucial for enhancing diagnostic efficiency and reducing mortality rates associated with skin cancer. Enhancing the capabilities of image classification models for skin lesions is essential to assist in accurately classifying skin diseases of patients. Aiming at this goal, a novel EFAM-Net model is proposed in this paper for the skin lesion classification task. Firstly, a newly designed Attention Residual Learning ConvNeXt (ARLC) block is used to extract low-level features such as colors and textures in images. Then, the deep-layer blocks of the network are replaced with a newly designed Parallel ConvNeXt (PCNXt) block, allowing to capture richer and more complex features. Additionally, another newly designed Multi-scale Efficient Attention Feature Fusion (MEAFF) block enhances feature extraction at various scales, allowing the model to effectively capture more comprehensive features in specific layers, fuse feature maps of different scales and enhance feature reuse at the end. EFAM-Net is experimentally evaluated on the ISIC 2019 and HAM10000 public datasets, as well as on a private dataset. The obtained results show that EFAM-Net achieves top classification performance among all compared models, by achieving overall accuracy of 92.30%, 93.95%, and 94.31% on the ISIC 2019, HAM10000, and private dataset, respectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3468612</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Cancer ; Cancer detection ; Classification ; Computational modeling ; ConvNeXt ; Datasets ; Deep learning ; EFAM-Net ; Feature extraction ; Feature maps ; HAM10000 ; Image classification ; Image enhancement ; ISIC 2019 ; lesion classification ; Lesions ; Medical imaging ; Skin ; Skin cancer</subject><ispartof>IEEE access, 2024, Vol.12, p.143029-143041</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-848150dbd8fca5478af75beb569b564e9c9b67a72ffd2795114cfce70726f4c13</cites><orcidid>0000-0003-3527-3773 ; 0000-0003-0535-7087 ; 0000-0003-3904-4513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10695064$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ji, Zhanlin</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Liu, Chunling</creatorcontrib><creatorcontrib>Wang, Zhiwu</creatorcontrib><creatorcontrib>Yuan, Na</creatorcontrib><creatorcontrib>Ganchev, Ivan</creatorcontrib><title>EFAM-Net: A Multi-Class Skin Lesion Classification Model Utilizing Enhanced Feature Fusion and Attention Mechanisms</title><title>IEEE access</title><addtitle>Access</addtitle><description>Skin cancer caused by common malignant tumors is a major threat to the health of patients. Automated classification of skin lesions using computer algorithms is crucial for enhancing diagnostic efficiency and reducing mortality rates associated with skin cancer. Enhancing the capabilities of image classification models for skin lesions is essential to assist in accurately classifying skin diseases of patients. Aiming at this goal, a novel EFAM-Net model is proposed in this paper for the skin lesion classification task. Firstly, a newly designed Attention Residual Learning ConvNeXt (ARLC) block is used to extract low-level features such as colors and textures in images. Then, the deep-layer blocks of the network are replaced with a newly designed Parallel ConvNeXt (PCNXt) block, allowing to capture richer and more complex features. Additionally, another newly designed Multi-scale Efficient Attention Feature Fusion (MEAFF) block enhances feature extraction at various scales, allowing the model to effectively capture more comprehensive features in specific layers, fuse feature maps of different scales and enhance feature reuse at the end. EFAM-Net is experimentally evaluated on the ISIC 2019 and HAM10000 public datasets, as well as on a private dataset. The obtained results show that EFAM-Net achieves top classification performance among all compared models, by achieving overall accuracy of 92.30%, 93.95%, and 94.31% on the ISIC 2019, HAM10000, and private dataset, respectively.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cancer</subject><subject>Cancer detection</subject><subject>Classification</subject><subject>Computational modeling</subject><subject>ConvNeXt</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>EFAM-Net</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>HAM10000</subject><subject>Image classification</subject><subject>Image enhancement</subject><subject>ISIC 2019</subject><subject>lesion classification</subject><subject>Lesions</subject><subject>Medical imaging</subject><subject>Skin</subject><subject>Skin cancer</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v1DAUjBBIVG1_ARwscc5iO_6IuUXRLlTahcPSs-XYz8VLmhTbOcCvx7upqlqy_N5oZt6Tp6o-ELwhBKvPXd9vj8cNxZRtGiZaQeib6ooSoeqGN-Ltq_p9dZvSCZfTFojLqyptd92h_g75C-rQYRlzqPvRpISOv8OE9pDCPKELEnywJp_bw-xgRPc5jOFfmB7QdvplJgsO7cDkJQLaLReZmRzqcoZpVYEttJAe0031zpsxwe3ze13d77Y_-2_1_sfXu77b15a2KtctawnHbnCtt4Yz2Rov-QADF6pcBsqqQUgjqfeOSsUJYdZbkFhS4ZklzXV1t_q62Zz0UwyPJv7Vswn6AszxQZuYgx1B83YARQc7SAdMeKzkwB3xntvGcAq2eH1avZ7i_GeBlPVpXuJU1tdNGcwFLh9fWM3KsnFOKYJ_mUqwPoel17D0OSz9HFZRfVxVAQBeKUpCWLDmP51ykMQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ji, Zhanlin</creator><creator>Wang, Xuan</creator><creator>Liu, Chunling</creator><creator>Wang, Zhiwu</creator><creator>Yuan, Na</creator><creator>Ganchev, Ivan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3527-3773</orcidid><orcidid>https://orcid.org/0000-0003-0535-7087</orcidid><orcidid>https://orcid.org/0000-0003-3904-4513</orcidid></search><sort><creationdate>2024</creationdate><title>EFAM-Net: A Multi-Class Skin Lesion Classification Model Utilizing Enhanced Feature Fusion and Attention Mechanisms</title><author>Ji, Zhanlin ; Wang, Xuan ; Liu, Chunling ; Wang, Zhiwu ; Yuan, Na ; Ganchev, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-848150dbd8fca5478af75beb569b564e9c9b67a72ffd2795114cfce70726f4c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cancer</topic><topic>Cancer detection</topic><topic>Classification</topic><topic>Computational modeling</topic><topic>ConvNeXt</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>EFAM-Net</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>HAM10000</topic><topic>Image classification</topic><topic>Image enhancement</topic><topic>ISIC 2019</topic><topic>lesion classification</topic><topic>Lesions</topic><topic>Medical imaging</topic><topic>Skin</topic><topic>Skin cancer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Zhanlin</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Liu, Chunling</creatorcontrib><creatorcontrib>Wang, Zhiwu</creatorcontrib><creatorcontrib>Yuan, Na</creatorcontrib><creatorcontrib>Ganchev, Ivan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Zhanlin</au><au>Wang, Xuan</au><au>Liu, Chunling</au><au>Wang, Zhiwu</au><au>Yuan, Na</au><au>Ganchev, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EFAM-Net: A Multi-Class Skin Lesion Classification Model Utilizing Enhanced Feature Fusion and Attention Mechanisms</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>143029</spage><epage>143041</epage><pages>143029-143041</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Skin cancer caused by common malignant tumors is a major threat to the health of patients. Automated classification of skin lesions using computer algorithms is crucial for enhancing diagnostic efficiency and reducing mortality rates associated with skin cancer. Enhancing the capabilities of image classification models for skin lesions is essential to assist in accurately classifying skin diseases of patients. Aiming at this goal, a novel EFAM-Net model is proposed in this paper for the skin lesion classification task. Firstly, a newly designed Attention Residual Learning ConvNeXt (ARLC) block is used to extract low-level features such as colors and textures in images. Then, the deep-layer blocks of the network are replaced with a newly designed Parallel ConvNeXt (PCNXt) block, allowing to capture richer and more complex features. Additionally, another newly designed Multi-scale Efficient Attention Feature Fusion (MEAFF) block enhances feature extraction at various scales, allowing the model to effectively capture more comprehensive features in specific layers, fuse feature maps of different scales and enhance feature reuse at the end. EFAM-Net is experimentally evaluated on the ISIC 2019 and HAM10000 public datasets, as well as on a private dataset. The obtained results show that EFAM-Net achieves top classification performance among all compared models, by achieving overall accuracy of 92.30%, 93.95%, and 94.31% on the ISIC 2019, HAM10000, and private dataset, respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3468612</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3527-3773</orcidid><orcidid>https://orcid.org/0000-0003-0535-7087</orcidid><orcidid>https://orcid.org/0000-0003-3904-4513</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.143029-143041 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3114560686 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Algorithms Cancer Cancer detection Classification Computational modeling ConvNeXt Datasets Deep learning EFAM-Net Feature extraction Feature maps HAM10000 Image classification Image enhancement ISIC 2019 lesion classification Lesions Medical imaging Skin Skin cancer |
title | EFAM-Net: A Multi-Class Skin Lesion Classification Model Utilizing Enhanced Feature Fusion and Attention Mechanisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EFAM-Net:%20A%20Multi-Class%20Skin%20Lesion%20Classification%20Model%20Utilizing%20Enhanced%20Feature%20Fusion%20and%20Attention%20Mechanisms&rft.jtitle=IEEE%20access&rft.au=Ji,%20Zhanlin&rft.date=2024&rft.volume=12&rft.spage=143029&rft.epage=143041&rft.pages=143029-143041&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3468612&rft_dat=%3Cproquest_ieee_%3E3114560686%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114560686&rft_id=info:pmid/&rft_ieee_id=10695064&rft_doaj_id=oai_doaj_org_article_58be92bcb7de46f097b5d1ff5c3a52ec&rfr_iscdi=true |