Quantum Duality Maps, Skein Algebras and their Ensemble Compatibility

We generalize the quantum duality map I A of Allegretti–Kim (Adv Math 306:1164–1208, 2017) for punctured closed surfaces to general marked surfaces. When the marked surface has no interior marked points, we investigate its compatibility with the quantum duality map I X on the dual side based on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2024-10, Vol.405 (10), Article 244
Hauptverfasser: Ishibashi, Tsukasa, Karuo, Hiroaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Communications in mathematical physics
container_volume 405
creator Ishibashi, Tsukasa
Karuo, Hiroaki
description We generalize the quantum duality map I A of Allegretti–Kim (Adv Math 306:1164–1208, 2017) for punctured closed surfaces to general marked surfaces. When the marked surface has no interior marked points, we investigate its compatibility with the quantum duality map I X on the dual side based on the quantum bracelets basis (Mandel and Qin in arXiv:2301.11101 ; Thurston in Proc Natl Acad Sci USA 111(27):9725–9732, 2014). Our construction factors through reduced stated skein algebras, based on the quantum trace maps (Lê in Quantum Topol 9(3):591–632, 2018) together with an appropriate way of skein lifting of integral A -laminations. We also give skein theoretic proofs for some expected properties of Laurent expressions, and positivity of structure constants for marked disks and a marked annulus.
doi_str_mv 10.1007/s00220-024-05119-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3114132227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114132227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-fb4a6e6462dedadd1950dbc3e118eeacd4708af7924a01803225ffcd1e5198393</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOI7-AVcBt0bvTdK0XQ7j-ABFRF2HtEnHjn2ZtIv-eztWcOfqbs75LhxCzhGuECC-DgCcAwMuGUSIKRsPyAKl4AxSVIdkAYDAhEJ1TE5C2AFAypVakM3LYJp-qOnNYKqyH-mT6cIlff10ZUNX1dZl3gRqGkv7D1d6ummCq7PK0XVbd6Yvs3JvnZKjwlTBnf3eJXm_3byt79nj893DevXIci5lz4pMGuWUVNw6a6zFNAKb5cIhJs6Z3MoYElPEKZcGMAHBeVQUuUUXYZqIVCzJxbzb-fZrcKHXu3bwzfRSC0SJk8DjieIzlfs2BO8K3fmyNn7UCHqfS8-59JRL_-TS4ySJWQoT3Gyd_5v-x_oGcEZtXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114132227</pqid></control><display><type>article</type><title>Quantum Duality Maps, Skein Algebras and their Ensemble Compatibility</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ishibashi, Tsukasa ; Karuo, Hiroaki</creator><creatorcontrib>Ishibashi, Tsukasa ; Karuo, Hiroaki</creatorcontrib><description>We generalize the quantum duality map I A of Allegretti–Kim (Adv Math 306:1164–1208, 2017) for punctured closed surfaces to general marked surfaces. When the marked surface has no interior marked points, we investigate its compatibility with the quantum duality map I X on the dual side based on the quantum bracelets basis (Mandel and Qin in arXiv:2301.11101 ; Thurston in Proc Natl Acad Sci USA 111(27):9725–9732, 2014). Our construction factors through reduced stated skein algebras, based on the quantum trace maps (Lê in Quantum Topol 9(3):591–632, 2018) together with an appropriate way of skein lifting of integral A -laminations. We also give skein theoretic proofs for some expected properties of Laurent expressions, and positivity of structure constants for marked disks and a marked annulus.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-024-05119-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Compatibility ; Complex Systems ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Skeins ; Theoretical</subject><ispartof>Communications in mathematical physics, 2024-10, Vol.405 (10), Article 244</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-fb4a6e6462dedadd1950dbc3e118eeacd4708af7924a01803225ffcd1e5198393</cites><orcidid>0000-0002-6982-189X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-024-05119-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-024-05119-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ishibashi, Tsukasa</creatorcontrib><creatorcontrib>Karuo, Hiroaki</creatorcontrib><title>Quantum Duality Maps, Skein Algebras and their Ensemble Compatibility</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We generalize the quantum duality map I A of Allegretti–Kim (Adv Math 306:1164–1208, 2017) for punctured closed surfaces to general marked surfaces. When the marked surface has no interior marked points, we investigate its compatibility with the quantum duality map I X on the dual side based on the quantum bracelets basis (Mandel and Qin in arXiv:2301.11101 ; Thurston in Proc Natl Acad Sci USA 111(27):9725–9732, 2014). Our construction factors through reduced stated skein algebras, based on the quantum trace maps (Lê in Quantum Topol 9(3):591–632, 2018) together with an appropriate way of skein lifting of integral A -laminations. We also give skein theoretic proofs for some expected properties of Laurent expressions, and positivity of structure constants for marked disks and a marked annulus.</description><subject>Classical and Quantum Gravitation</subject><subject>Compatibility</subject><subject>Complex Systems</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Skeins</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLxDAURoMoOI7-AVcBt0bvTdK0XQ7j-ABFRF2HtEnHjn2ZtIv-eztWcOfqbs75LhxCzhGuECC-DgCcAwMuGUSIKRsPyAKl4AxSVIdkAYDAhEJ1TE5C2AFAypVakM3LYJp-qOnNYKqyH-mT6cIlff10ZUNX1dZl3gRqGkv7D1d6ummCq7PK0XVbd6Yvs3JvnZKjwlTBnf3eJXm_3byt79nj893DevXIci5lz4pMGuWUVNw6a6zFNAKb5cIhJs6Z3MoYElPEKZcGMAHBeVQUuUUXYZqIVCzJxbzb-fZrcKHXu3bwzfRSC0SJk8DjieIzlfs2BO8K3fmyNn7UCHqfS8-59JRL_-TS4ySJWQoT3Gyd_5v-x_oGcEZtXw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Ishibashi, Tsukasa</creator><creator>Karuo, Hiroaki</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6982-189X</orcidid></search><sort><creationdate>20241001</creationdate><title>Quantum Duality Maps, Skein Algebras and their Ensemble Compatibility</title><author>Ishibashi, Tsukasa ; Karuo, Hiroaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-fb4a6e6462dedadd1950dbc3e118eeacd4708af7924a01803225ffcd1e5198393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Compatibility</topic><topic>Complex Systems</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Skeins</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishibashi, Tsukasa</creatorcontrib><creatorcontrib>Karuo, Hiroaki</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishibashi, Tsukasa</au><au>Karuo, Hiroaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Duality Maps, Skein Algebras and their Ensemble Compatibility</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>405</volume><issue>10</issue><artnum>244</artnum><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We generalize the quantum duality map I A of Allegretti–Kim (Adv Math 306:1164–1208, 2017) for punctured closed surfaces to general marked surfaces. When the marked surface has no interior marked points, we investigate its compatibility with the quantum duality map I X on the dual side based on the quantum bracelets basis (Mandel and Qin in arXiv:2301.11101 ; Thurston in Proc Natl Acad Sci USA 111(27):9725–9732, 2014). Our construction factors through reduced stated skein algebras, based on the quantum trace maps (Lê in Quantum Topol 9(3):591–632, 2018) together with an appropriate way of skein lifting of integral A -laminations. We also give skein theoretic proofs for some expected properties of Laurent expressions, and positivity of structure constants for marked disks and a marked annulus.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-024-05119-y</doi><orcidid>https://orcid.org/0000-0002-6982-189X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2024-10, Vol.405 (10), Article 244
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_3114132227
source SpringerLink Journals - AutoHoldings
subjects Classical and Quantum Gravitation
Compatibility
Complex Systems
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Skeins
Theoretical
title Quantum Duality Maps, Skein Algebras and their Ensemble Compatibility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Duality%20Maps,%20Skein%20Algebras%20and%20their%20Ensemble%20Compatibility&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Ishibashi,%20Tsukasa&rft.date=2024-10-01&rft.volume=405&rft.issue=10&rft.artnum=244&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-024-05119-y&rft_dat=%3Cproquest_cross%3E3114132227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114132227&rft_id=info:pmid/&rfr_iscdi=true