The New Definitions of Loss Function for the Model-Based Parameter Identification Method in Power Distribution Network

Accurate device parameters play critical roles in calculation and analysis of power distribution network (PDN). However, device parameters are always affected by the operating status and influenced by manual entry; besides, the distribution area of PDN is very wide with many points, which brings mor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International transactions on electrical energy systems 2022-08, Vol.2022, p.1-11
Hauptverfasser: Li, Bin, Hu, Ke, Ma, Jiayang, Xu, Shihe, He, Yuanwei, Jiao, Hao, Chen, Jinming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title International transactions on electrical energy systems
container_volume 2022
creator Li, Bin
Hu, Ke
Ma, Jiayang
Xu, Shihe
He, Yuanwei
Jiao, Hao
Chen, Jinming
description Accurate device parameters play critical roles in calculation and analysis of power distribution network (PDN). However, device parameters are always affected by the operating status and influenced by manual entry; besides, the distribution area of PDN is very wide with many points, which brings more challenges to PDN parameter identification. Most of the proposed algorithms recently assume that the parameters of PDN contribute in a nonlinear probability space and optimize parameters by the power flow model with a loss function. Although these algorithms can achieve satisfying results in PDN analysis, the relationship between the power flow model and loss functions remains unclear. In this paper, the outputs of the power flow model have been analyzed firstly by experimental data, which includes the head and end voltages, as well as active and reactive power on the low-voltage side. It is revealed that the loss functions used by current algorithms are not suitable and reasonable for power flow model in PDN calculation, which constitutes one of the main findings of this work. Subsequently, this work proposes four novel loss functions combined with genetic algorithm (GA) and Markov Chain Monte Carlo (MCMC) to identify PDN parameters. Compared with the published algorithms, our experimental results show that the loss function defined in this paper can achieve better and more stable performance with about two times lower in MAE, RMSE, and RMPE evaluation functions to identify PDN parameters.
doi_str_mv 10.1155/2022/4197043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3114104884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114104884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-dc61565a291ab2478773c1e73296837de338d92ed03bd97fab74f02623a39e203</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpjg-wxBJC_UjiZAkthUpt6aKsIyceqy5tXGyHiL8nfSxYMZsZzT2aq7kI3VLySGmSDBlhbBjTXJCYX6AeIwmJBOHZ5Z_5Gg2835Cu8phSkfXQ92oNeAEtHoM2tQnG1h5bjWfWezxp6uqwwdo6HDpwbhVso2fpQeGldHIHARyeKqiD0aaSR3gOYW0VNjVe2raTx8YHZ8rmKC4gtNZ93qArLbceBufeRx-Tl9XoLZq9v05HT7Oo4lyESFUpTdJEspzKksUiE4JXFARneZpxoYDzTOUMFOGlyoWWpYg1YSnjkufACO-ju9PdvbNfDfhQbGzj6s6y4JTGlMRZFnfUw4mqXPe2A13sndlJ91NQUhzCLQ7hFudwO_z-hK9NrWRr_qd_AYETeFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114104884</pqid></control><display><type>article</type><title>The New Definitions of Loss Function for the Model-Based Parameter Identification Method in Power Distribution Network</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Li, Bin ; Hu, Ke ; Ma, Jiayang ; Xu, Shihe ; He, Yuanwei ; Jiao, Hao ; Chen, Jinming</creator><contributor>Hampannavar, Santoshkumar ; Santoshkumar Hampannavar</contributor><creatorcontrib>Li, Bin ; Hu, Ke ; Ma, Jiayang ; Xu, Shihe ; He, Yuanwei ; Jiao, Hao ; Chen, Jinming ; Hampannavar, Santoshkumar ; Santoshkumar Hampannavar</creatorcontrib><description>Accurate device parameters play critical roles in calculation and analysis of power distribution network (PDN). However, device parameters are always affected by the operating status and influenced by manual entry; besides, the distribution area of PDN is very wide with many points, which brings more challenges to PDN parameter identification. Most of the proposed algorithms recently assume that the parameters of PDN contribute in a nonlinear probability space and optimize parameters by the power flow model with a loss function. Although these algorithms can achieve satisfying results in PDN analysis, the relationship between the power flow model and loss functions remains unclear. In this paper, the outputs of the power flow model have been analyzed firstly by experimental data, which includes the head and end voltages, as well as active and reactive power on the low-voltage side. It is revealed that the loss functions used by current algorithms are not suitable and reasonable for power flow model in PDN calculation, which constitutes one of the main findings of this work. Subsequently, this work proposes four novel loss functions combined with genetic algorithm (GA) and Markov Chain Monte Carlo (MCMC) to identify PDN parameters. Compared with the published algorithms, our experimental results show that the loss function defined in this paper can achieve better and more stable performance with about two times lower in MAE, RMSE, and RMPE evaluation functions to identify PDN parameters.</description><identifier>ISSN: 2050-7038</identifier><identifier>EISSN: 2050-7038</identifier><identifier>DOI: 10.1155/2022/4197043</identifier><language>eng</language><publisher>Hoboken: Hindawi</publisher><subject>Algorithms ; Artificial intelligence ; Electric power distribution ; Genetic algorithms ; Identification methods ; Lagrange multiplier ; Machine learning ; Markov analysis ; Markov chains ; Mathematical analysis ; Methods ; Optimization algorithms ; Parameter identification ; Power flow ; Reactive power ; Simulation</subject><ispartof>International transactions on electrical energy systems, 2022-08, Vol.2022, p.1-11</ispartof><rights>Copyright © 2022 Bin Li et al.</rights><rights>Copyright © 2022 Bin Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-dc61565a291ab2478773c1e73296837de338d92ed03bd97fab74f02623a39e203</citedby><cites>FETCH-LOGICAL-c337t-dc61565a291ab2478773c1e73296837de338d92ed03bd97fab74f02623a39e203</cites><orcidid>0000-0001-7253-2493 ; 0000-0003-2299-5507 ; 0000-0002-4135-6762 ; 0000-0001-8017-1456 ; 0000-0002-6222-9658 ; 0000-0002-5287-8689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,879,27931,27932</link.rule.ids></links><search><contributor>Hampannavar, Santoshkumar</contributor><contributor>Santoshkumar Hampannavar</contributor><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Hu, Ke</creatorcontrib><creatorcontrib>Ma, Jiayang</creatorcontrib><creatorcontrib>Xu, Shihe</creatorcontrib><creatorcontrib>He, Yuanwei</creatorcontrib><creatorcontrib>Jiao, Hao</creatorcontrib><creatorcontrib>Chen, Jinming</creatorcontrib><title>The New Definitions of Loss Function for the Model-Based Parameter Identification Method in Power Distribution Network</title><title>International transactions on electrical energy systems</title><description>Accurate device parameters play critical roles in calculation and analysis of power distribution network (PDN). However, device parameters are always affected by the operating status and influenced by manual entry; besides, the distribution area of PDN is very wide with many points, which brings more challenges to PDN parameter identification. Most of the proposed algorithms recently assume that the parameters of PDN contribute in a nonlinear probability space and optimize parameters by the power flow model with a loss function. Although these algorithms can achieve satisfying results in PDN analysis, the relationship between the power flow model and loss functions remains unclear. In this paper, the outputs of the power flow model have been analyzed firstly by experimental data, which includes the head and end voltages, as well as active and reactive power on the low-voltage side. It is revealed that the loss functions used by current algorithms are not suitable and reasonable for power flow model in PDN calculation, which constitutes one of the main findings of this work. Subsequently, this work proposes four novel loss functions combined with genetic algorithm (GA) and Markov Chain Monte Carlo (MCMC) to identify PDN parameters. Compared with the published algorithms, our experimental results show that the loss function defined in this paper can achieve better and more stable performance with about two times lower in MAE, RMSE, and RMPE evaluation functions to identify PDN parameters.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Electric power distribution</subject><subject>Genetic algorithms</subject><subject>Identification methods</subject><subject>Lagrange multiplier</subject><subject>Machine learning</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Optimization algorithms</subject><subject>Parameter identification</subject><subject>Power flow</subject><subject>Reactive power</subject><subject>Simulation</subject><issn>2050-7038</issn><issn>2050-7038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kMtOwzAQRS0EElXpjg-wxBJC_UjiZAkthUpt6aKsIyceqy5tXGyHiL8nfSxYMZsZzT2aq7kI3VLySGmSDBlhbBjTXJCYX6AeIwmJBOHZ5Z_5Gg2835Cu8phSkfXQ92oNeAEtHoM2tQnG1h5bjWfWezxp6uqwwdo6HDpwbhVso2fpQeGldHIHARyeKqiD0aaSR3gOYW0VNjVe2raTx8YHZ8rmKC4gtNZ93qArLbceBufeRx-Tl9XoLZq9v05HT7Oo4lyESFUpTdJEspzKksUiE4JXFARneZpxoYDzTOUMFOGlyoWWpYg1YSnjkufACO-ju9PdvbNfDfhQbGzj6s6y4JTGlMRZFnfUw4mqXPe2A13sndlJ91NQUhzCLQ7hFudwO_z-hK9NrWRr_qd_AYETeFI</recordid><startdate>20220804</startdate><enddate>20220804</enddate><creator>Li, Bin</creator><creator>Hu, Ke</creator><creator>Ma, Jiayang</creator><creator>Xu, Shihe</creator><creator>He, Yuanwei</creator><creator>Jiao, Hao</creator><creator>Chen, Jinming</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7253-2493</orcidid><orcidid>https://orcid.org/0000-0003-2299-5507</orcidid><orcidid>https://orcid.org/0000-0002-4135-6762</orcidid><orcidid>https://orcid.org/0000-0001-8017-1456</orcidid><orcidid>https://orcid.org/0000-0002-6222-9658</orcidid><orcidid>https://orcid.org/0000-0002-5287-8689</orcidid></search><sort><creationdate>20220804</creationdate><title>The New Definitions of Loss Function for the Model-Based Parameter Identification Method in Power Distribution Network</title><author>Li, Bin ; Hu, Ke ; Ma, Jiayang ; Xu, Shihe ; He, Yuanwei ; Jiao, Hao ; Chen, Jinming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-dc61565a291ab2478773c1e73296837de338d92ed03bd97fab74f02623a39e203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Electric power distribution</topic><topic>Genetic algorithms</topic><topic>Identification methods</topic><topic>Lagrange multiplier</topic><topic>Machine learning</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Optimization algorithms</topic><topic>Parameter identification</topic><topic>Power flow</topic><topic>Reactive power</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Hu, Ke</creatorcontrib><creatorcontrib>Ma, Jiayang</creatorcontrib><creatorcontrib>Xu, Shihe</creatorcontrib><creatorcontrib>He, Yuanwei</creatorcontrib><creatorcontrib>Jiao, Hao</creatorcontrib><creatorcontrib>Chen, Jinming</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International transactions on electrical energy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bin</au><au>Hu, Ke</au><au>Ma, Jiayang</au><au>Xu, Shihe</au><au>He, Yuanwei</au><au>Jiao, Hao</au><au>Chen, Jinming</au><au>Hampannavar, Santoshkumar</au><au>Santoshkumar Hampannavar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The New Definitions of Loss Function for the Model-Based Parameter Identification Method in Power Distribution Network</atitle><jtitle>International transactions on electrical energy systems</jtitle><date>2022-08-04</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2050-7038</issn><eissn>2050-7038</eissn><abstract>Accurate device parameters play critical roles in calculation and analysis of power distribution network (PDN). However, device parameters are always affected by the operating status and influenced by manual entry; besides, the distribution area of PDN is very wide with many points, which brings more challenges to PDN parameter identification. Most of the proposed algorithms recently assume that the parameters of PDN contribute in a nonlinear probability space and optimize parameters by the power flow model with a loss function. Although these algorithms can achieve satisfying results in PDN analysis, the relationship between the power flow model and loss functions remains unclear. In this paper, the outputs of the power flow model have been analyzed firstly by experimental data, which includes the head and end voltages, as well as active and reactive power on the low-voltage side. It is revealed that the loss functions used by current algorithms are not suitable and reasonable for power flow model in PDN calculation, which constitutes one of the main findings of this work. Subsequently, this work proposes four novel loss functions combined with genetic algorithm (GA) and Markov Chain Monte Carlo (MCMC) to identify PDN parameters. Compared with the published algorithms, our experimental results show that the loss function defined in this paper can achieve better and more stable performance with about two times lower in MAE, RMSE, and RMPE evaluation functions to identify PDN parameters.</abstract><cop>Hoboken</cop><pub>Hindawi</pub><doi>10.1155/2022/4197043</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7253-2493</orcidid><orcidid>https://orcid.org/0000-0003-2299-5507</orcidid><orcidid>https://orcid.org/0000-0002-4135-6762</orcidid><orcidid>https://orcid.org/0000-0001-8017-1456</orcidid><orcidid>https://orcid.org/0000-0002-6222-9658</orcidid><orcidid>https://orcid.org/0000-0002-5287-8689</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7038
ispartof International transactions on electrical energy systems, 2022-08, Vol.2022, p.1-11
issn 2050-7038
2050-7038
language eng
recordid cdi_proquest_journals_3114104884
source DOAJ Directory of Open Access Journals; Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Algorithms
Artificial intelligence
Electric power distribution
Genetic algorithms
Identification methods
Lagrange multiplier
Machine learning
Markov analysis
Markov chains
Mathematical analysis
Methods
Optimization algorithms
Parameter identification
Power flow
Reactive power
Simulation
title The New Definitions of Loss Function for the Model-Based Parameter Identification Method in Power Distribution Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T21%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20New%20Definitions%20of%20Loss%20Function%20for%20the%20Model-Based%20Parameter%20Identification%20Method%20in%20Power%20Distribution%20Network&rft.jtitle=International%20transactions%20on%20electrical%20energy%20systems&rft.au=Li,%20Bin&rft.date=2022-08-04&rft.volume=2022&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2050-7038&rft.eissn=2050-7038&rft_id=info:doi/10.1155/2022/4197043&rft_dat=%3Cproquest_cross%3E3114104884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114104884&rft_id=info:pmid/&rfr_iscdi=true