The Stellar Initial Mass Function of Early Dark Matter-free Gas Objects
To date, JWST has detected the earliest known star clusters in our Universe (Adamo et al. 2024, Messa et al. 2024, Vanzella et al. 2024, Mowla et al. 2024). They appear to be relatively compact (~few pc, Adamo et al. 2024) and had only recently formed their stars. It was speculated that these cluste...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lake, William Grudić, Michael Y Naoz, Smadar Yoshida, Naoki Williams, Claire E Burkhart, Blakesley Marinacci, Federico Vogelsberger, Mark Chen, Avi |
description | To date, JWST has detected the earliest known star clusters in our Universe (Adamo et al. 2024, Messa et al. 2024, Vanzella et al. 2024, Mowla et al. 2024). They appear to be relatively compact (~few pc, Adamo et al. 2024) and had only recently formed their stars. It was speculated that these clusters may be the earliest progenitors of globular clusters ever detected. Globular clusters are a relic of the initial stages of star formation in the Universe. However, because they contain little to no dark matter (e.g., Heggie & Hut 1996, Bradford et al. 2011, Conroy et al. 2011, Ibata et al. 2013), their formation mechanism poses a significant theoretical challenge. A recent suggestion pointed out that the relative velocity between the gas and the dark matter (Tseliakhovich & Hirata 2010) in the early Universe could naturally form potentially star-forming regions outside of dark matter halos. Here, for the first time, we follow the star formation process of these early Universe objects using high-resolution hydrodynamical simulations, including mechanical feedback. Our results suggest that the first dark matter-less star clusters are top-heavy, with a higher abundance of massive stars compared to today's clusters and extremely high stellar mass surface densities compared to the local Universe. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3113848957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113848957</sourcerecordid><originalsourceid>FETCH-proquest_journals_31138489573</originalsourceid><addsrcrecordid>eNqNyrEOgjAQgOHGxESivMMlziTQguCsgA7GQXZykiOCTau9Mvj2MvgATv_w_QsRSKWSqEilXImQeYzjWO5ymWUqEHXzILh50hodnM3gB9RwQWaoJtP5wRqwPZTo9AeO6J6zeU8u6h0R1MhwvY_Ued6IZY-aKfx1LbZV2RxO0cvZ90Ts29FOzszUqiRRRVrss1z9d30BZ186fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113848957</pqid></control><display><type>article</type><title>The Stellar Initial Mass Function of Early Dark Matter-free Gas Objects</title><source>Free E- Journals</source><creator>Lake, William ; Grudić, Michael Y ; Naoz, Smadar ; Yoshida, Naoki ; Williams, Claire E ; Burkhart, Blakesley ; Marinacci, Federico ; Vogelsberger, Mark ; Chen, Avi</creator><creatorcontrib>Lake, William ; Grudić, Michael Y ; Naoz, Smadar ; Yoshida, Naoki ; Williams, Claire E ; Burkhart, Blakesley ; Marinacci, Federico ; Vogelsberger, Mark ; Chen, Avi</creatorcontrib><description>To date, JWST has detected the earliest known star clusters in our Universe (Adamo et al. 2024, Messa et al. 2024, Vanzella et al. 2024, Mowla et al. 2024). They appear to be relatively compact (~few pc, Adamo et al. 2024) and had only recently formed their stars. It was speculated that these clusters may be the earliest progenitors of globular clusters ever detected. Globular clusters are a relic of the initial stages of star formation in the Universe. However, because they contain little to no dark matter (e.g., Heggie & Hut 1996, Bradford et al. 2011, Conroy et al. 2011, Ibata et al. 2013), their formation mechanism poses a significant theoretical challenge. A recent suggestion pointed out that the relative velocity between the gas and the dark matter (Tseliakhovich & Hirata 2010) in the early Universe could naturally form potentially star-forming regions outside of dark matter halos. Here, for the first time, we follow the star formation process of these early Universe objects using high-resolution hydrodynamical simulations, including mechanical feedback. Our results suggest that the first dark matter-less star clusters are top-heavy, with a higher abundance of massive stars compared to today's clusters and extremely high stellar mass surface densities compared to the local Universe.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dark matter ; Globular clusters ; Initial mass function ; Massive stars ; Star & galaxy formation ; Star clusters ; Star formation ; Stellar mass ; Universe</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Lake, William</creatorcontrib><creatorcontrib>Grudić, Michael Y</creatorcontrib><creatorcontrib>Naoz, Smadar</creatorcontrib><creatorcontrib>Yoshida, Naoki</creatorcontrib><creatorcontrib>Williams, Claire E</creatorcontrib><creatorcontrib>Burkhart, Blakesley</creatorcontrib><creatorcontrib>Marinacci, Federico</creatorcontrib><creatorcontrib>Vogelsberger, Mark</creatorcontrib><creatorcontrib>Chen, Avi</creatorcontrib><title>The Stellar Initial Mass Function of Early Dark Matter-free Gas Objects</title><title>arXiv.org</title><description>To date, JWST has detected the earliest known star clusters in our Universe (Adamo et al. 2024, Messa et al. 2024, Vanzella et al. 2024, Mowla et al. 2024). They appear to be relatively compact (~few pc, Adamo et al. 2024) and had only recently formed their stars. It was speculated that these clusters may be the earliest progenitors of globular clusters ever detected. Globular clusters are a relic of the initial stages of star formation in the Universe. However, because they contain little to no dark matter (e.g., Heggie & Hut 1996, Bradford et al. 2011, Conroy et al. 2011, Ibata et al. 2013), their formation mechanism poses a significant theoretical challenge. A recent suggestion pointed out that the relative velocity between the gas and the dark matter (Tseliakhovich & Hirata 2010) in the early Universe could naturally form potentially star-forming regions outside of dark matter halos. Here, for the first time, we follow the star formation process of these early Universe objects using high-resolution hydrodynamical simulations, including mechanical feedback. Our results suggest that the first dark matter-less star clusters are top-heavy, with a higher abundance of massive stars compared to today's clusters and extremely high stellar mass surface densities compared to the local Universe.</description><subject>Dark matter</subject><subject>Globular clusters</subject><subject>Initial mass function</subject><subject>Massive stars</subject><subject>Star & galaxy formation</subject><subject>Star clusters</subject><subject>Star formation</subject><subject>Stellar mass</subject><subject>Universe</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAQgOHGxESivMMlziTQguCsgA7GQXZykiOCTau9Mvj2MvgATv_w_QsRSKWSqEilXImQeYzjWO5ymWUqEHXzILh50hodnM3gB9RwQWaoJtP5wRqwPZTo9AeO6J6zeU8u6h0R1MhwvY_Ued6IZY-aKfx1LbZV2RxO0cvZ90Ts29FOzszUqiRRRVrss1z9d30BZ186fw</recordid><startdate>20241003</startdate><enddate>20241003</enddate><creator>Lake, William</creator><creator>Grudić, Michael Y</creator><creator>Naoz, Smadar</creator><creator>Yoshida, Naoki</creator><creator>Williams, Claire E</creator><creator>Burkhart, Blakesley</creator><creator>Marinacci, Federico</creator><creator>Vogelsberger, Mark</creator><creator>Chen, Avi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241003</creationdate><title>The Stellar Initial Mass Function of Early Dark Matter-free Gas Objects</title><author>Lake, William ; Grudić, Michael Y ; Naoz, Smadar ; Yoshida, Naoki ; Williams, Claire E ; Burkhart, Blakesley ; Marinacci, Federico ; Vogelsberger, Mark ; Chen, Avi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31138489573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dark matter</topic><topic>Globular clusters</topic><topic>Initial mass function</topic><topic>Massive stars</topic><topic>Star & galaxy formation</topic><topic>Star clusters</topic><topic>Star formation</topic><topic>Stellar mass</topic><topic>Universe</topic><toplevel>online_resources</toplevel><creatorcontrib>Lake, William</creatorcontrib><creatorcontrib>Grudić, Michael Y</creatorcontrib><creatorcontrib>Naoz, Smadar</creatorcontrib><creatorcontrib>Yoshida, Naoki</creatorcontrib><creatorcontrib>Williams, Claire E</creatorcontrib><creatorcontrib>Burkhart, Blakesley</creatorcontrib><creatorcontrib>Marinacci, Federico</creatorcontrib><creatorcontrib>Vogelsberger, Mark</creatorcontrib><creatorcontrib>Chen, Avi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lake, William</au><au>Grudić, Michael Y</au><au>Naoz, Smadar</au><au>Yoshida, Naoki</au><au>Williams, Claire E</au><au>Burkhart, Blakesley</au><au>Marinacci, Federico</au><au>Vogelsberger, Mark</au><au>Chen, Avi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Stellar Initial Mass Function of Early Dark Matter-free Gas Objects</atitle><jtitle>arXiv.org</jtitle><date>2024-10-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>To date, JWST has detected the earliest known star clusters in our Universe (Adamo et al. 2024, Messa et al. 2024, Vanzella et al. 2024, Mowla et al. 2024). They appear to be relatively compact (~few pc, Adamo et al. 2024) and had only recently formed their stars. It was speculated that these clusters may be the earliest progenitors of globular clusters ever detected. Globular clusters are a relic of the initial stages of star formation in the Universe. However, because they contain little to no dark matter (e.g., Heggie & Hut 1996, Bradford et al. 2011, Conroy et al. 2011, Ibata et al. 2013), their formation mechanism poses a significant theoretical challenge. A recent suggestion pointed out that the relative velocity between the gas and the dark matter (Tseliakhovich & Hirata 2010) in the early Universe could naturally form potentially star-forming regions outside of dark matter halos. Here, for the first time, we follow the star formation process of these early Universe objects using high-resolution hydrodynamical simulations, including mechanical feedback. Our results suggest that the first dark matter-less star clusters are top-heavy, with a higher abundance of massive stars compared to today's clusters and extremely high stellar mass surface densities compared to the local Universe.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3113848957 |
source | Free E- Journals |
subjects | Dark matter Globular clusters Initial mass function Massive stars Star & galaxy formation Star clusters Star formation Stellar mass Universe |
title | The Stellar Initial Mass Function of Early Dark Matter-free Gas Objects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Stellar%20Initial%20Mass%20Function%20of%20Early%20Dark%20Matter-free%20Gas%20Objects&rft.jtitle=arXiv.org&rft.au=Lake,%20William&rft.date=2024-10-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3113848957%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113848957&rft_id=info:pmid/&rfr_iscdi=true |