Influence of back pressure adjustment of porous media on cavity flow noise control
Control of self-sustained oscillation and noise reduction poses a significant challenge. The present study employs Implicit Large Eddy Simulation at a Mach number of 0.85 to investigate the influence of a porous cavity floor on flow dynamics. By substituting the solid floor with porous media, the fu...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-10, Vol.36 (10) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Li, Bo Zhou, Qingqing Yuan, Xianxu Su, Hongmin Guo, Qilong |
description | Control of self-sustained oscillation and noise reduction poses a significant challenge. The present study employs Implicit Large Eddy Simulation at a Mach number of 0.85 to investigate the influence of a porous cavity floor on flow dynamics. By substituting the solid floor with porous media, the fundamental pressure–velocity relationship within the medium is established according to Darcy's law. Findings reveal marked suppression of wall pulsations, accompanied by a 10 dB decrease in sound pressure levels. The porous medium induces blowing and suction effects, effectively modulating large-scale re-circulation and mitigating shear layer instability, thereby approximating free mixing layer characteristics and suppressing cavity flow oscillations. At an optimized porosity for maximum noise reduction, altering back pressure at the cavity floor induces a transition in the local flow regime from suction-dominated to blowing-dominated state. Excessive reduction of back pressure promotes suction; conversely, increased pressure intensifies blowing, further attenuating feedback mechanisms and enhancing noise reduction. To explore noise reduction mechanisms, mode decomposition analyses demonstrate the efficacy of porous media in disrupting large-scale coherence structures within shear layer and redistributing energy from dominant modes to a broader frequency spectrum that engages smaller flow structures. This energy reallocation mechanism contributes to the mitigation of cavity flow noise and deepens insights into the role of porous media in flow modulation and noise control. |
doi_str_mv | 10.1063/5.0231082 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3113833780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113833780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-f9d5718bd3209c4ad73d7d9f78847447bd19c78bbd6f4d4332ee834922eb309f3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcIuFKYmuRMc1lK8VIoCKLrIZMLTJ0mY5JR-vZOqWtX_4HzcQ78CF1TsqCEw_1yQRhQItkJmk2hKsE5Pz3MglScAz1HFzlvCSGgGJ-ht3Xw_eiCcTh63GrziYfkch6Tw9pux1x2LpTDbogpjhnvnO00jgEb_d2VPfZ9_MEhdtlhE0NJsb9EZ1732V395Rx9PD2-r16qzevzevWwqQyVrFRe2aWgsrXAiDK1tgKssMoLKWtR16K1VBkh29ZyX9sagDknoVaMuRaI8jBHN8e7Q4pfo8ul2cYxhellA5SCBBCSTOr2qEyKOSfnmyF1O532DSXNobJm2fxVNtm7o82mK7p0MfyDfwGJBWrr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113833780</pqid></control><display><type>article</type><title>Influence of back pressure adjustment of porous media on cavity flow noise control</title><source>AIP Journals Complete</source><creator>Li, Bo ; Zhou, Qingqing ; Yuan, Xianxu ; Su, Hongmin ; Guo, Qilong</creator><creatorcontrib>Li, Bo ; Zhou, Qingqing ; Yuan, Xianxu ; Su, Hongmin ; Guo, Qilong</creatorcontrib><description>Control of self-sustained oscillation and noise reduction poses a significant challenge. The present study employs Implicit Large Eddy Simulation at a Mach number of 0.85 to investigate the influence of a porous cavity floor on flow dynamics. By substituting the solid floor with porous media, the fundamental pressure–velocity relationship within the medium is established according to Darcy's law. Findings reveal marked suppression of wall pulsations, accompanied by a 10 dB decrease in sound pressure levels. The porous medium induces blowing and suction effects, effectively modulating large-scale re-circulation and mitigating shear layer instability, thereby approximating free mixing layer characteristics and suppressing cavity flow oscillations. At an optimized porosity for maximum noise reduction, altering back pressure at the cavity floor induces a transition in the local flow regime from suction-dominated to blowing-dominated state. Excessive reduction of back pressure promotes suction; conversely, increased pressure intensifies blowing, further attenuating feedback mechanisms and enhancing noise reduction. To explore noise reduction mechanisms, mode decomposition analyses demonstrate the efficacy of porous media in disrupting large-scale coherence structures within shear layer and redistributing energy from dominant modes to a broader frequency spectrum that engages smaller flow structures. This energy reallocation mechanism contributes to the mitigation of cavity flow noise and deepens insights into the role of porous media in flow modulation and noise control.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0231082</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Blowing pressure ; Cavity flow ; Darcys law ; Flow stability ; Fluid dynamics ; Fluid flow ; Frequency spectrum ; Large eddy simulation ; Local flow ; Mach number ; Noise control ; Noise reduction ; Porous media ; Pressure effects ; Shear flow ; Shear layers ; Sound pressure ; Suction</subject><ispartof>Physics of fluids (1994), 2024-10, Vol.36 (10)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-f9d5718bd3209c4ad73d7d9f78847447bd19c78bbd6f4d4332ee834922eb309f3</cites><orcidid>0000-0003-1504-0454 ; 0000-0002-7668-0116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Zhou, Qingqing</creatorcontrib><creatorcontrib>Yuan, Xianxu</creatorcontrib><creatorcontrib>Su, Hongmin</creatorcontrib><creatorcontrib>Guo, Qilong</creatorcontrib><title>Influence of back pressure adjustment of porous media on cavity flow noise control</title><title>Physics of fluids (1994)</title><description>Control of self-sustained oscillation and noise reduction poses a significant challenge. The present study employs Implicit Large Eddy Simulation at a Mach number of 0.85 to investigate the influence of a porous cavity floor on flow dynamics. By substituting the solid floor with porous media, the fundamental pressure–velocity relationship within the medium is established according to Darcy's law. Findings reveal marked suppression of wall pulsations, accompanied by a 10 dB decrease in sound pressure levels. The porous medium induces blowing and suction effects, effectively modulating large-scale re-circulation and mitigating shear layer instability, thereby approximating free mixing layer characteristics and suppressing cavity flow oscillations. At an optimized porosity for maximum noise reduction, altering back pressure at the cavity floor induces a transition in the local flow regime from suction-dominated to blowing-dominated state. Excessive reduction of back pressure promotes suction; conversely, increased pressure intensifies blowing, further attenuating feedback mechanisms and enhancing noise reduction. To explore noise reduction mechanisms, mode decomposition analyses demonstrate the efficacy of porous media in disrupting large-scale coherence structures within shear layer and redistributing energy from dominant modes to a broader frequency spectrum that engages smaller flow structures. This energy reallocation mechanism contributes to the mitigation of cavity flow noise and deepens insights into the role of porous media in flow modulation and noise control.</description><subject>Blowing pressure</subject><subject>Cavity flow</subject><subject>Darcys law</subject><subject>Flow stability</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Frequency spectrum</subject><subject>Large eddy simulation</subject><subject>Local flow</subject><subject>Mach number</subject><subject>Noise control</subject><subject>Noise reduction</subject><subject>Porous media</subject><subject>Pressure effects</subject><subject>Shear flow</subject><subject>Shear layers</subject><subject>Sound pressure</subject><subject>Suction</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcIuFKYmuRMc1lK8VIoCKLrIZMLTJ0mY5JR-vZOqWtX_4HzcQ78CF1TsqCEw_1yQRhQItkJmk2hKsE5Pz3MglScAz1HFzlvCSGgGJ-ht3Xw_eiCcTh63GrziYfkch6Tw9pux1x2LpTDbogpjhnvnO00jgEb_d2VPfZ9_MEhdtlhE0NJsb9EZ1732V395Rx9PD2-r16qzevzevWwqQyVrFRe2aWgsrXAiDK1tgKssMoLKWtR16K1VBkh29ZyX9sagDknoVaMuRaI8jBHN8e7Q4pfo8ul2cYxhellA5SCBBCSTOr2qEyKOSfnmyF1O532DSXNobJm2fxVNtm7o82mK7p0MfyDfwGJBWrr</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Li, Bo</creator><creator>Zhou, Qingqing</creator><creator>Yuan, Xianxu</creator><creator>Su, Hongmin</creator><creator>Guo, Qilong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1504-0454</orcidid><orcidid>https://orcid.org/0000-0002-7668-0116</orcidid></search><sort><creationdate>202410</creationdate><title>Influence of back pressure adjustment of porous media on cavity flow noise control</title><author>Li, Bo ; Zhou, Qingqing ; Yuan, Xianxu ; Su, Hongmin ; Guo, Qilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-f9d5718bd3209c4ad73d7d9f78847447bd19c78bbd6f4d4332ee834922eb309f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Blowing pressure</topic><topic>Cavity flow</topic><topic>Darcys law</topic><topic>Flow stability</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Frequency spectrum</topic><topic>Large eddy simulation</topic><topic>Local flow</topic><topic>Mach number</topic><topic>Noise control</topic><topic>Noise reduction</topic><topic>Porous media</topic><topic>Pressure effects</topic><topic>Shear flow</topic><topic>Shear layers</topic><topic>Sound pressure</topic><topic>Suction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Zhou, Qingqing</creatorcontrib><creatorcontrib>Yuan, Xianxu</creatorcontrib><creatorcontrib>Su, Hongmin</creatorcontrib><creatorcontrib>Guo, Qilong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bo</au><au>Zhou, Qingqing</au><au>Yuan, Xianxu</au><au>Su, Hongmin</au><au>Guo, Qilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of back pressure adjustment of porous media on cavity flow noise control</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-10</date><risdate>2024</risdate><volume>36</volume><issue>10</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Control of self-sustained oscillation and noise reduction poses a significant challenge. The present study employs Implicit Large Eddy Simulation at a Mach number of 0.85 to investigate the influence of a porous cavity floor on flow dynamics. By substituting the solid floor with porous media, the fundamental pressure–velocity relationship within the medium is established according to Darcy's law. Findings reveal marked suppression of wall pulsations, accompanied by a 10 dB decrease in sound pressure levels. The porous medium induces blowing and suction effects, effectively modulating large-scale re-circulation and mitigating shear layer instability, thereby approximating free mixing layer characteristics and suppressing cavity flow oscillations. At an optimized porosity for maximum noise reduction, altering back pressure at the cavity floor induces a transition in the local flow regime from suction-dominated to blowing-dominated state. Excessive reduction of back pressure promotes suction; conversely, increased pressure intensifies blowing, further attenuating feedback mechanisms and enhancing noise reduction. To explore noise reduction mechanisms, mode decomposition analyses demonstrate the efficacy of porous media in disrupting large-scale coherence structures within shear layer and redistributing energy from dominant modes to a broader frequency spectrum that engages smaller flow structures. This energy reallocation mechanism contributes to the mitigation of cavity flow noise and deepens insights into the role of porous media in flow modulation and noise control.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0231082</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1504-0454</orcidid><orcidid>https://orcid.org/0000-0002-7668-0116</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-10, Vol.36 (10) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_3113833780 |
source | AIP Journals Complete |
subjects | Blowing pressure Cavity flow Darcys law Flow stability Fluid dynamics Fluid flow Frequency spectrum Large eddy simulation Local flow Mach number Noise control Noise reduction Porous media Pressure effects Shear flow Shear layers Sound pressure Suction |
title | Influence of back pressure adjustment of porous media on cavity flow noise control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20back%20pressure%20adjustment%20of%20porous%20media%20on%20cavity%20flow%20noise%20control&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Li,%20Bo&rft.date=2024-10&rft.volume=36&rft.issue=10&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0231082&rft_dat=%3Cproquest_scita%3E3113833780%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113833780&rft_id=info:pmid/&rfr_iscdi=true |