Discrimination of cash and grain crops using SVM classifier-an attempt on sentinel 1

The study aims to discriminate crops in to healthy and stressed categories of cash crops and grain crops by the support of machine language technique called support vector machine (SVM) with soil moisture and plant water content (PWC) as inputs. The soil moisture was arrived from scatter plot model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gopi, Neena M., Annadurai, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3187
creator Gopi, Neena M.
Annadurai, R.
description The study aims to discriminate crops in to healthy and stressed categories of cash crops and grain crops by the support of machine language technique called support vector machine (SVM) with soil moisture and plant water content (PWC) as inputs. The soil moisture was arrived from scatter plot model [SP model] and PWC was retrieved from inverting the existing water cloud model (WCM). The crops were classified under the categories of Grain crops stressed (0 - 0.15), Grain crops healthy (0.16 - 3), Cash crops stressed (0.31 - 0.45) and Cash crops healthy (0.46 - 0.60) using SVM. Further, the results from SVM were validated using accuracy assessment method using the field observations. The outcomes demonstrate a high degree of agreement with the field circumstances (OA=85%, Kappa coefficient =0.83).
doi_str_mv 10.1063/5.0239235
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3113833586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113833586</sourcerecordid><originalsourceid>FETCH-LOGICAL-p635-c84678c8e80d2f282dfba0639c8616471b3c40e098fbeb91efc37cdb56ed51813</originalsourceid><addsrcrecordid>eNotkDFPwzAUhC0EEqEw8A8ssSGl-Nmx44yoUEAqYqBCbJbj2MVV6wTbGfj3BNrpLffu7juEroHMgQh2x-eEsoYyfoIK4BzKWoA4RQUhTVXSin2eo4uUtoTQpq5lgdYPPpno9z7o7PuAe4eNTl9Yhw5vovYBm9gPCY_Jhw1-_3jFZqdT8s7bWOqAdc52P2Q8vSYbsg92h-ESnTm9S_bqeGdovXxcL57L1dvTy-J-VQ6C8dLIStTSSCtJRx2VtHOtnhgaI6fOVQ0tMxWxpJGutW0D1hlWm67lwnYcJLAZujnYDrH_Hm3KatuPMUyJigEwyRiXYlLdHlTJ-PwPqYYJWMcfBUT9jaa4Oo7GfgE5TF3c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3113833586</pqid></control><display><type>conference_proceeding</type><title>Discrimination of cash and grain crops using SVM classifier-an attempt on sentinel 1</title><source>AIP Journals Complete</source><creator>Gopi, Neena M. ; Annadurai, R.</creator><contributor>R, Ramasubramani ; Shanmugavel, Durgadevagi ; V, Janani</contributor><creatorcontrib>Gopi, Neena M. ; Annadurai, R. ; R, Ramasubramani ; Shanmugavel, Durgadevagi ; V, Janani</creatorcontrib><description>The study aims to discriminate crops in to healthy and stressed categories of cash crops and grain crops by the support of machine language technique called support vector machine (SVM) with soil moisture and plant water content (PWC) as inputs. The soil moisture was arrived from scatter plot model [SP model] and PWC was retrieved from inverting the existing water cloud model (WCM). The crops were classified under the categories of Grain crops stressed (0 - 0.15), Grain crops healthy (0.16 - 3), Cash crops stressed (0.31 - 0.45) and Cash crops healthy (0.46 - 0.60) using SVM. Further, the results from SVM were validated using accuracy assessment method using the field observations. The outcomes demonstrate a high degree of agreement with the field circumstances (OA=85%, Kappa coefficient =0.83).</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0239235</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Crops ; Moisture content ; Soil moisture ; Soil stresses ; Soil water ; Support vector machines</subject><ispartof>AIP conference proceedings, 2024, Vol.3187 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0239235$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>R, Ramasubramani</contributor><contributor>Shanmugavel, Durgadevagi</contributor><contributor>V, Janani</contributor><creatorcontrib>Gopi, Neena M.</creatorcontrib><creatorcontrib>Annadurai, R.</creatorcontrib><title>Discrimination of cash and grain crops using SVM classifier-an attempt on sentinel 1</title><title>AIP conference proceedings</title><description>The study aims to discriminate crops in to healthy and stressed categories of cash crops and grain crops by the support of machine language technique called support vector machine (SVM) with soil moisture and plant water content (PWC) as inputs. The soil moisture was arrived from scatter plot model [SP model] and PWC was retrieved from inverting the existing water cloud model (WCM). The crops were classified under the categories of Grain crops stressed (0 - 0.15), Grain crops healthy (0.16 - 3), Cash crops stressed (0.31 - 0.45) and Cash crops healthy (0.46 - 0.60) using SVM. Further, the results from SVM were validated using accuracy assessment method using the field observations. The outcomes demonstrate a high degree of agreement with the field circumstances (OA=85%, Kappa coefficient =0.83).</description><subject>Crops</subject><subject>Moisture content</subject><subject>Soil moisture</subject><subject>Soil stresses</subject><subject>Soil water</subject><subject>Support vector machines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkDFPwzAUhC0EEqEw8A8ssSGl-Nmx44yoUEAqYqBCbJbj2MVV6wTbGfj3BNrpLffu7juEroHMgQh2x-eEsoYyfoIK4BzKWoA4RQUhTVXSin2eo4uUtoTQpq5lgdYPPpno9z7o7PuAe4eNTl9Yhw5vovYBm9gPCY_Jhw1-_3jFZqdT8s7bWOqAdc52P2Q8vSYbsg92h-ESnTm9S_bqeGdovXxcL57L1dvTy-J-VQ6C8dLIStTSSCtJRx2VtHOtnhgaI6fOVQ0tMxWxpJGutW0D1hlWm67lwnYcJLAZujnYDrH_Hm3KatuPMUyJigEwyRiXYlLdHlTJ-PwPqYYJWMcfBUT9jaa4Oo7GfgE5TF3c</recordid><startdate>20241007</startdate><enddate>20241007</enddate><creator>Gopi, Neena M.</creator><creator>Annadurai, R.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241007</creationdate><title>Discrimination of cash and grain crops using SVM classifier-an attempt on sentinel 1</title><author>Gopi, Neena M. ; Annadurai, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p635-c84678c8e80d2f282dfba0639c8616471b3c40e098fbeb91efc37cdb56ed51813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crops</topic><topic>Moisture content</topic><topic>Soil moisture</topic><topic>Soil stresses</topic><topic>Soil water</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gopi, Neena M.</creatorcontrib><creatorcontrib>Annadurai, R.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gopi, Neena M.</au><au>Annadurai, R.</au><au>R, Ramasubramani</au><au>Shanmugavel, Durgadevagi</au><au>V, Janani</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Discrimination of cash and grain crops using SVM classifier-an attempt on sentinel 1</atitle><btitle>AIP conference proceedings</btitle><date>2024-10-07</date><risdate>2024</risdate><volume>3187</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The study aims to discriminate crops in to healthy and stressed categories of cash crops and grain crops by the support of machine language technique called support vector machine (SVM) with soil moisture and plant water content (PWC) as inputs. The soil moisture was arrived from scatter plot model [SP model] and PWC was retrieved from inverting the existing water cloud model (WCM). The crops were classified under the categories of Grain crops stressed (0 - 0.15), Grain crops healthy (0.16 - 3), Cash crops stressed (0.31 - 0.45) and Cash crops healthy (0.46 - 0.60) using SVM. Further, the results from SVM were validated using accuracy assessment method using the field observations. The outcomes demonstrate a high degree of agreement with the field circumstances (OA=85%, Kappa coefficient =0.83).</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0239235</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3187 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3113833586
source AIP Journals Complete
subjects Crops
Moisture content
Soil moisture
Soil stresses
Soil water
Support vector machines
title Discrimination of cash and grain crops using SVM classifier-an attempt on sentinel 1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A24%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Discrimination%20of%20cash%20and%20grain%20crops%20using%20SVM%20classifier-an%20attempt%20on%20sentinel%201&rft.btitle=AIP%20conference%20proceedings&rft.au=Gopi,%20Neena%20M.&rft.date=2024-10-07&rft.volume=3187&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0239235&rft_dat=%3Cproquest_scita%3E3113833586%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113833586&rft_id=info:pmid/&rfr_iscdi=true