Discrimination of cash and grain crops using SVM classifier-an attempt on sentinel 1
The study aims to discriminate crops in to healthy and stressed categories of cash crops and grain crops by the support of machine language technique called support vector machine (SVM) with soil moisture and plant water content (PWC) as inputs. The soil moisture was arrived from scatter plot model...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3187 |
creator | Gopi, Neena M. Annadurai, R. |
description | The study aims to discriminate crops in to healthy and stressed categories of cash crops and grain crops by the support of machine language technique called support vector machine (SVM) with soil moisture and plant water content (PWC) as inputs. The soil moisture was arrived from scatter plot model [SP model] and PWC was retrieved from inverting the existing water cloud model (WCM). The crops were classified under the categories of Grain crops stressed (0 - 0.15), Grain crops healthy (0.16 - 3), Cash crops stressed (0.31 - 0.45) and Cash crops healthy (0.46 - 0.60) using SVM. Further, the results from SVM were validated using accuracy assessment method using the field observations. The outcomes demonstrate a high degree of agreement with the field circumstances (OA=85%, Kappa coefficient =0.83). |
doi_str_mv | 10.1063/5.0239235 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3113833586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113833586</sourcerecordid><originalsourceid>FETCH-LOGICAL-p635-c84678c8e80d2f282dfba0639c8616471b3c40e098fbeb91efc37cdb56ed51813</originalsourceid><addsrcrecordid>eNotkDFPwzAUhC0EEqEw8A8ssSGl-Nmx44yoUEAqYqBCbJbj2MVV6wTbGfj3BNrpLffu7juEroHMgQh2x-eEsoYyfoIK4BzKWoA4RQUhTVXSin2eo4uUtoTQpq5lgdYPPpno9z7o7PuAe4eNTl9Yhw5vovYBm9gPCY_Jhw1-_3jFZqdT8s7bWOqAdc52P2Q8vSYbsg92h-ESnTm9S_bqeGdovXxcL57L1dvTy-J-VQ6C8dLIStTSSCtJRx2VtHOtnhgaI6fOVQ0tMxWxpJGutW0D1hlWm67lwnYcJLAZujnYDrH_Hm3KatuPMUyJigEwyRiXYlLdHlTJ-PwPqYYJWMcfBUT9jaa4Oo7GfgE5TF3c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3113833586</pqid></control><display><type>conference_proceeding</type><title>Discrimination of cash and grain crops using SVM classifier-an attempt on sentinel 1</title><source>AIP Journals Complete</source><creator>Gopi, Neena M. ; Annadurai, R.</creator><contributor>R, Ramasubramani ; Shanmugavel, Durgadevagi ; V, Janani</contributor><creatorcontrib>Gopi, Neena M. ; Annadurai, R. ; R, Ramasubramani ; Shanmugavel, Durgadevagi ; V, Janani</creatorcontrib><description>The study aims to discriminate crops in to healthy and stressed categories of cash crops and grain crops by the support of machine language technique called support vector machine (SVM) with soil moisture and plant water content (PWC) as inputs. The soil moisture was arrived from scatter plot model [SP model] and PWC was retrieved from inverting the existing water cloud model (WCM). The crops were classified under the categories of Grain crops stressed (0 - 0.15), Grain crops healthy (0.16 - 3), Cash crops stressed (0.31 - 0.45) and Cash crops healthy (0.46 - 0.60) using SVM. Further, the results from SVM were validated using accuracy assessment method using the field observations. The outcomes demonstrate a high degree of agreement with the field circumstances (OA=85%, Kappa coefficient =0.83).</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0239235</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Crops ; Moisture content ; Soil moisture ; Soil stresses ; Soil water ; Support vector machines</subject><ispartof>AIP conference proceedings, 2024, Vol.3187 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0239235$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>R, Ramasubramani</contributor><contributor>Shanmugavel, Durgadevagi</contributor><contributor>V, Janani</contributor><creatorcontrib>Gopi, Neena M.</creatorcontrib><creatorcontrib>Annadurai, R.</creatorcontrib><title>Discrimination of cash and grain crops using SVM classifier-an attempt on sentinel 1</title><title>AIP conference proceedings</title><description>The study aims to discriminate crops in to healthy and stressed categories of cash crops and grain crops by the support of machine language technique called support vector machine (SVM) with soil moisture and plant water content (PWC) as inputs. The soil moisture was arrived from scatter plot model [SP model] and PWC was retrieved from inverting the existing water cloud model (WCM). The crops were classified under the categories of Grain crops stressed (0 - 0.15), Grain crops healthy (0.16 - 3), Cash crops stressed (0.31 - 0.45) and Cash crops healthy (0.46 - 0.60) using SVM. Further, the results from SVM were validated using accuracy assessment method using the field observations. The outcomes demonstrate a high degree of agreement with the field circumstances (OA=85%, Kappa coefficient =0.83).</description><subject>Crops</subject><subject>Moisture content</subject><subject>Soil moisture</subject><subject>Soil stresses</subject><subject>Soil water</subject><subject>Support vector machines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkDFPwzAUhC0EEqEw8A8ssSGl-Nmx44yoUEAqYqBCbJbj2MVV6wTbGfj3BNrpLffu7juEroHMgQh2x-eEsoYyfoIK4BzKWoA4RQUhTVXSin2eo4uUtoTQpq5lgdYPPpno9z7o7PuAe4eNTl9Yhw5vovYBm9gPCY_Jhw1-_3jFZqdT8s7bWOqAdc52P2Q8vSYbsg92h-ESnTm9S_bqeGdovXxcL57L1dvTy-J-VQ6C8dLIStTSSCtJRx2VtHOtnhgaI6fOVQ0tMxWxpJGutW0D1hlWm67lwnYcJLAZujnYDrH_Hm3KatuPMUyJigEwyRiXYlLdHlTJ-PwPqYYJWMcfBUT9jaa4Oo7GfgE5TF3c</recordid><startdate>20241007</startdate><enddate>20241007</enddate><creator>Gopi, Neena M.</creator><creator>Annadurai, R.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241007</creationdate><title>Discrimination of cash and grain crops using SVM classifier-an attempt on sentinel 1</title><author>Gopi, Neena M. ; Annadurai, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p635-c84678c8e80d2f282dfba0639c8616471b3c40e098fbeb91efc37cdb56ed51813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crops</topic><topic>Moisture content</topic><topic>Soil moisture</topic><topic>Soil stresses</topic><topic>Soil water</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gopi, Neena M.</creatorcontrib><creatorcontrib>Annadurai, R.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gopi, Neena M.</au><au>Annadurai, R.</au><au>R, Ramasubramani</au><au>Shanmugavel, Durgadevagi</au><au>V, Janani</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Discrimination of cash and grain crops using SVM classifier-an attempt on sentinel 1</atitle><btitle>AIP conference proceedings</btitle><date>2024-10-07</date><risdate>2024</risdate><volume>3187</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The study aims to discriminate crops in to healthy and stressed categories of cash crops and grain crops by the support of machine language technique called support vector machine (SVM) with soil moisture and plant water content (PWC) as inputs. The soil moisture was arrived from scatter plot model [SP model] and PWC was retrieved from inverting the existing water cloud model (WCM). The crops were classified under the categories of Grain crops stressed (0 - 0.15), Grain crops healthy (0.16 - 3), Cash crops stressed (0.31 - 0.45) and Cash crops healthy (0.46 - 0.60) using SVM. Further, the results from SVM were validated using accuracy assessment method using the field observations. The outcomes demonstrate a high degree of agreement with the field circumstances (OA=85%, Kappa coefficient =0.83).</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0239235</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3187 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3113833586 |
source | AIP Journals Complete |
subjects | Crops Moisture content Soil moisture Soil stresses Soil water Support vector machines |
title | Discrimination of cash and grain crops using SVM classifier-an attempt on sentinel 1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A24%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Discrimination%20of%20cash%20and%20grain%20crops%20using%20SVM%20classifier-an%20attempt%20on%20sentinel%201&rft.btitle=AIP%20conference%20proceedings&rft.au=Gopi,%20Neena%20M.&rft.date=2024-10-07&rft.volume=3187&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0239235&rft_dat=%3Cproquest_scita%3E3113833586%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113833586&rft_id=info:pmid/&rfr_iscdi=true |