An optimised Cell for in situ XAS of Gas Diffusion Electrocatalyst Electrodes

The quality of in situ XAS of electrochemical systems is highly sensitive to electrode disturbances, such as gas evolution and gas consumption at an electrolyte/catalyst interface. A novel in situ spectro‐electrochemical X‐ray absorption spectroscopy (SPEC‐XAS) cell is presented as a new tool for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2024-10, Vol.16 (19), p.n/a
Hauptverfasser: Sherwin, Connor, Celorrio, Veronica, Podbevsek, Ursa, Rigg, Katie, Hodges, Toby, Ibraliu, Armando, Telfer, Abbey J., McLeod, Lucy, Difilippo, Alessandro, Corbos, Elena C., Zalitis, Chris, Russell, Andrea E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page
container_title ChemCatChem
container_volume 16
creator Sherwin, Connor
Celorrio, Veronica
Podbevsek, Ursa
Rigg, Katie
Hodges, Toby
Ibraliu, Armando
Telfer, Abbey J.
McLeod, Lucy
Difilippo, Alessandro
Corbos, Elena C.
Zalitis, Chris
Russell, Andrea E.
description The quality of in situ XAS of electrochemical systems is highly sensitive to electrode disturbances, such as gas evolution and gas consumption at an electrolyte/catalyst interface. A novel in situ spectro‐electrochemical X‐ray absorption spectroscopy (SPEC‐XAS) cell is presented as a new tool for the characterisation of gas evolving and consuming electrocatalysts at high overpotentials. By utilising a thin, porous membrane with efficient electrolyte and gas circulating loops, an improved three phase interface is established that enabled efficient gas supply and minimised the interference from bubble formation. X‐ray absorption spectroscopy (XAS) measurements were conducted in fluorescence mode with three experiments selected to demonstrate the cell's performance. The first two reactions; an in‐situ study of a highly active amorphous iridium oxide catalyst during the oxygen evolution reaction (OER) and an in‐situ study of copper oxide during the carbon dioxide reduction reaction (CO2RR) are used to exemplify the XAS data quality achieved under operational conditions. Thirdly, a detailed XAS investigation of a highly dispersed platinum catalyst during the oxygen reduction reaction (ORR) is presented, along with comparative data in nitrogen. These measurements show the retention of oxygen on the surface of the platinum metal particles down to 0.48 V (vs. RHE), well below the platinum oxide reduction peak. Here we present a spectro‐electrochemical cell design for in situ XAS measurements of gas evolving and consuming electrocatalysts. This is exemplified in the study of Iridium oxide for the oxygen evolution reaction and copper oxide for the CO2 reduction reaction. A detailed investigation of platinum during the oxygen reduction is also presented to demonstrate the full scope of the cell.
doi_str_mv 10.1002/cctc.202400221
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3113536185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113536185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2021-d2bd8d0f85c4040f083153f80148c3545566256b88820ebfd04b6e23e0b903e63</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWP9cPQc8b50kmzR7LGutQqEHK3gLu9kEUrabmmSR3rz4Rf0kbqnWo6eZB78383gI3RAYEwB6p3XSYwo0HwQlJ2hEpJhkTBbF6XGXcI4uYlwDiIJN-Agtpx322-Q2LpoGl6ZtsfUBu-7r4zO61OPX6TP2Fs-riO-dtX10vsOz1ugUvK5S1e5i-tWNiVfozFZtNNc_8xK9PMxW5WO2WM6fyuki00NCkjW0bmQDVnKdQw4WJCOcWQkkl5rxnHMhKBe1lJKCqW0DeS0MZQbqApgR7BLdHu5ug3_rTUxq7fvQDS8VI4RxJojkAzU-UDr4GIOxahvcpgo7RUDtS1P70tSxtMFQHAzvrjW7f2hVlqvyz_sNcBRviw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113536185</pqid></control><display><type>article</type><title>An optimised Cell for in situ XAS of Gas Diffusion Electrocatalyst Electrodes</title><source>Wiley Journals</source><creator>Sherwin, Connor ; Celorrio, Veronica ; Podbevsek, Ursa ; Rigg, Katie ; Hodges, Toby ; Ibraliu, Armando ; Telfer, Abbey J. ; McLeod, Lucy ; Difilippo, Alessandro ; Corbos, Elena C. ; Zalitis, Chris ; Russell, Andrea E.</creator><creatorcontrib>Sherwin, Connor ; Celorrio, Veronica ; Podbevsek, Ursa ; Rigg, Katie ; Hodges, Toby ; Ibraliu, Armando ; Telfer, Abbey J. ; McLeod, Lucy ; Difilippo, Alessandro ; Corbos, Elena C. ; Zalitis, Chris ; Russell, Andrea E.</creatorcontrib><description>The quality of in situ XAS of electrochemical systems is highly sensitive to electrode disturbances, such as gas evolution and gas consumption at an electrolyte/catalyst interface. A novel in situ spectro‐electrochemical X‐ray absorption spectroscopy (SPEC‐XAS) cell is presented as a new tool for the characterisation of gas evolving and consuming electrocatalysts at high overpotentials. By utilising a thin, porous membrane with efficient electrolyte and gas circulating loops, an improved three phase interface is established that enabled efficient gas supply and minimised the interference from bubble formation. X‐ray absorption spectroscopy (XAS) measurements were conducted in fluorescence mode with three experiments selected to demonstrate the cell's performance. The first two reactions; an in‐situ study of a highly active amorphous iridium oxide catalyst during the oxygen evolution reaction (OER) and an in‐situ study of copper oxide during the carbon dioxide reduction reaction (CO2RR) are used to exemplify the XAS data quality achieved under operational conditions. Thirdly, a detailed XAS investigation of a highly dispersed platinum catalyst during the oxygen reduction reaction (ORR) is presented, along with comparative data in nitrogen. These measurements show the retention of oxygen on the surface of the platinum metal particles down to 0.48 V (vs. RHE), well below the platinum oxide reduction peak. Here we present a spectro‐electrochemical cell design for in situ XAS measurements of gas evolving and consuming electrocatalysts. This is exemplified in the study of Iridium oxide for the oxygen evolution reaction and copper oxide for the CO2 reduction reaction. A detailed investigation of platinum during the oxygen reduction is also presented to demonstrate the full scope of the cell.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202400221</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption spectroscopy ; Carbon dioxide ; Catalysts ; Chemical reduction ; CO2RR ; Copper oxides ; Electrocatalysts ; Electrochemistry ; Electrodes ; Electrolytes ; Gas evolution ; Gaseous diffusion ; in situ XAS ; Iridium ; Metal particles ; OER ; ORR ; Oxygen evolution reactions ; Oxygen reduction reactions ; Platinum metals ; Platinum oxides ; Spectrum analysis</subject><ispartof>ChemCatChem, 2024-10, Vol.16 (19), p.n/a</ispartof><rights>2024 The Authors. ChemCatChem published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2021-d2bd8d0f85c4040f083153f80148c3545566256b88820ebfd04b6e23e0b903e63</cites><orcidid>0000-0002-7525-8052 ; 0000-0002-1208-7145 ; 0000-0001-9139-2254 ; 0000-0002-8382-6443 ; 0000-0002-2818-3844 ; 0000-0002-5161-2707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.202400221$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.202400221$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Sherwin, Connor</creatorcontrib><creatorcontrib>Celorrio, Veronica</creatorcontrib><creatorcontrib>Podbevsek, Ursa</creatorcontrib><creatorcontrib>Rigg, Katie</creatorcontrib><creatorcontrib>Hodges, Toby</creatorcontrib><creatorcontrib>Ibraliu, Armando</creatorcontrib><creatorcontrib>Telfer, Abbey J.</creatorcontrib><creatorcontrib>McLeod, Lucy</creatorcontrib><creatorcontrib>Difilippo, Alessandro</creatorcontrib><creatorcontrib>Corbos, Elena C.</creatorcontrib><creatorcontrib>Zalitis, Chris</creatorcontrib><creatorcontrib>Russell, Andrea E.</creatorcontrib><title>An optimised Cell for in situ XAS of Gas Diffusion Electrocatalyst Electrodes</title><title>ChemCatChem</title><description>The quality of in situ XAS of electrochemical systems is highly sensitive to electrode disturbances, such as gas evolution and gas consumption at an electrolyte/catalyst interface. A novel in situ spectro‐electrochemical X‐ray absorption spectroscopy (SPEC‐XAS) cell is presented as a new tool for the characterisation of gas evolving and consuming electrocatalysts at high overpotentials. By utilising a thin, porous membrane with efficient electrolyte and gas circulating loops, an improved three phase interface is established that enabled efficient gas supply and minimised the interference from bubble formation. X‐ray absorption spectroscopy (XAS) measurements were conducted in fluorescence mode with three experiments selected to demonstrate the cell's performance. The first two reactions; an in‐situ study of a highly active amorphous iridium oxide catalyst during the oxygen evolution reaction (OER) and an in‐situ study of copper oxide during the carbon dioxide reduction reaction (CO2RR) are used to exemplify the XAS data quality achieved under operational conditions. Thirdly, a detailed XAS investigation of a highly dispersed platinum catalyst during the oxygen reduction reaction (ORR) is presented, along with comparative data in nitrogen. These measurements show the retention of oxygen on the surface of the platinum metal particles down to 0.48 V (vs. RHE), well below the platinum oxide reduction peak. Here we present a spectro‐electrochemical cell design for in situ XAS measurements of gas evolving and consuming electrocatalysts. This is exemplified in the study of Iridium oxide for the oxygen evolution reaction and copper oxide for the CO2 reduction reaction. A detailed investigation of platinum during the oxygen reduction is also presented to demonstrate the full scope of the cell.</description><subject>Absorption spectroscopy</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>CO2RR</subject><subject>Copper oxides</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Gas evolution</subject><subject>Gaseous diffusion</subject><subject>in situ XAS</subject><subject>Iridium</subject><subject>Metal particles</subject><subject>OER</subject><subject>ORR</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen reduction reactions</subject><subject>Platinum metals</subject><subject>Platinum oxides</subject><subject>Spectrum analysis</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE9LAzEQxYMoWP9cPQc8b50kmzR7LGutQqEHK3gLu9kEUrabmmSR3rz4Rf0kbqnWo6eZB78383gI3RAYEwB6p3XSYwo0HwQlJ2hEpJhkTBbF6XGXcI4uYlwDiIJN-Agtpx322-Q2LpoGl6ZtsfUBu-7r4zO61OPX6TP2Fs-riO-dtX10vsOz1ugUvK5S1e5i-tWNiVfozFZtNNc_8xK9PMxW5WO2WM6fyuki00NCkjW0bmQDVnKdQw4WJCOcWQkkl5rxnHMhKBe1lJKCqW0DeS0MZQbqApgR7BLdHu5ug3_rTUxq7fvQDS8VI4RxJojkAzU-UDr4GIOxahvcpgo7RUDtS1P70tSxtMFQHAzvrjW7f2hVlqvyz_sNcBRviw</recordid><startdate>20241007</startdate><enddate>20241007</enddate><creator>Sherwin, Connor</creator><creator>Celorrio, Veronica</creator><creator>Podbevsek, Ursa</creator><creator>Rigg, Katie</creator><creator>Hodges, Toby</creator><creator>Ibraliu, Armando</creator><creator>Telfer, Abbey J.</creator><creator>McLeod, Lucy</creator><creator>Difilippo, Alessandro</creator><creator>Corbos, Elena C.</creator><creator>Zalitis, Chris</creator><creator>Russell, Andrea E.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7525-8052</orcidid><orcidid>https://orcid.org/0000-0002-1208-7145</orcidid><orcidid>https://orcid.org/0000-0001-9139-2254</orcidid><orcidid>https://orcid.org/0000-0002-8382-6443</orcidid><orcidid>https://orcid.org/0000-0002-2818-3844</orcidid><orcidid>https://orcid.org/0000-0002-5161-2707</orcidid></search><sort><creationdate>20241007</creationdate><title>An optimised Cell for in situ XAS of Gas Diffusion Electrocatalyst Electrodes</title><author>Sherwin, Connor ; Celorrio, Veronica ; Podbevsek, Ursa ; Rigg, Katie ; Hodges, Toby ; Ibraliu, Armando ; Telfer, Abbey J. ; McLeod, Lucy ; Difilippo, Alessandro ; Corbos, Elena C. ; Zalitis, Chris ; Russell, Andrea E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2021-d2bd8d0f85c4040f083153f80148c3545566256b88820ebfd04b6e23e0b903e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectroscopy</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>CO2RR</topic><topic>Copper oxides</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Gas evolution</topic><topic>Gaseous diffusion</topic><topic>in situ XAS</topic><topic>Iridium</topic><topic>Metal particles</topic><topic>OER</topic><topic>ORR</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen reduction reactions</topic><topic>Platinum metals</topic><topic>Platinum oxides</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherwin, Connor</creatorcontrib><creatorcontrib>Celorrio, Veronica</creatorcontrib><creatorcontrib>Podbevsek, Ursa</creatorcontrib><creatorcontrib>Rigg, Katie</creatorcontrib><creatorcontrib>Hodges, Toby</creatorcontrib><creatorcontrib>Ibraliu, Armando</creatorcontrib><creatorcontrib>Telfer, Abbey J.</creatorcontrib><creatorcontrib>McLeod, Lucy</creatorcontrib><creatorcontrib>Difilippo, Alessandro</creatorcontrib><creatorcontrib>Corbos, Elena C.</creatorcontrib><creatorcontrib>Zalitis, Chris</creatorcontrib><creatorcontrib>Russell, Andrea E.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sherwin, Connor</au><au>Celorrio, Veronica</au><au>Podbevsek, Ursa</au><au>Rigg, Katie</au><au>Hodges, Toby</au><au>Ibraliu, Armando</au><au>Telfer, Abbey J.</au><au>McLeod, Lucy</au><au>Difilippo, Alessandro</au><au>Corbos, Elena C.</au><au>Zalitis, Chris</au><au>Russell, Andrea E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimised Cell for in situ XAS of Gas Diffusion Electrocatalyst Electrodes</atitle><jtitle>ChemCatChem</jtitle><date>2024-10-07</date><risdate>2024</risdate><volume>16</volume><issue>19</issue><epage>n/a</epage><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>The quality of in situ XAS of electrochemical systems is highly sensitive to electrode disturbances, such as gas evolution and gas consumption at an electrolyte/catalyst interface. A novel in situ spectro‐electrochemical X‐ray absorption spectroscopy (SPEC‐XAS) cell is presented as a new tool for the characterisation of gas evolving and consuming electrocatalysts at high overpotentials. By utilising a thin, porous membrane with efficient electrolyte and gas circulating loops, an improved three phase interface is established that enabled efficient gas supply and minimised the interference from bubble formation. X‐ray absorption spectroscopy (XAS) measurements were conducted in fluorescence mode with three experiments selected to demonstrate the cell's performance. The first two reactions; an in‐situ study of a highly active amorphous iridium oxide catalyst during the oxygen evolution reaction (OER) and an in‐situ study of copper oxide during the carbon dioxide reduction reaction (CO2RR) are used to exemplify the XAS data quality achieved under operational conditions. Thirdly, a detailed XAS investigation of a highly dispersed platinum catalyst during the oxygen reduction reaction (ORR) is presented, along with comparative data in nitrogen. These measurements show the retention of oxygen on the surface of the platinum metal particles down to 0.48 V (vs. RHE), well below the platinum oxide reduction peak. Here we present a spectro‐electrochemical cell design for in situ XAS measurements of gas evolving and consuming electrocatalysts. This is exemplified in the study of Iridium oxide for the oxygen evolution reaction and copper oxide for the CO2 reduction reaction. A detailed investigation of platinum during the oxygen reduction is also presented to demonstrate the full scope of the cell.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.202400221</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7525-8052</orcidid><orcidid>https://orcid.org/0000-0002-1208-7145</orcidid><orcidid>https://orcid.org/0000-0001-9139-2254</orcidid><orcidid>https://orcid.org/0000-0002-8382-6443</orcidid><orcidid>https://orcid.org/0000-0002-2818-3844</orcidid><orcidid>https://orcid.org/0000-0002-5161-2707</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2024-10, Vol.16 (19), p.n/a
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_3113536185
source Wiley Journals
subjects Absorption spectroscopy
Carbon dioxide
Catalysts
Chemical reduction
CO2RR
Copper oxides
Electrocatalysts
Electrochemistry
Electrodes
Electrolytes
Gas evolution
Gaseous diffusion
in situ XAS
Iridium
Metal particles
OER
ORR
Oxygen evolution reactions
Oxygen reduction reactions
Platinum metals
Platinum oxides
Spectrum analysis
title An optimised Cell for in situ XAS of Gas Diffusion Electrocatalyst Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimised%20Cell%20for%20in%E2%80%85situ%20XAS%20of%20Gas%20Diffusion%20Electrocatalyst%20Electrodes&rft.jtitle=ChemCatChem&rft.au=Sherwin,%20Connor&rft.date=2024-10-07&rft.volume=16&rft.issue=19&rft.epage=n/a&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202400221&rft_dat=%3Cproquest_cross%3E3113536185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113536185&rft_id=info:pmid/&rfr_iscdi=true