Robust Junction Formation of Copper(I) Oxide on Graphitic Carbon Nitride Enhances Aqueous Carbon Dioxide Photoreduction without Sacrificial Reagents
Semiconductor hybrid structures containing multiple components have been considered an ideal photocatalyst design to generate long‐lived charge‐separated states. The reaction activity is highly susceptible to the catalyst component and morphology, particularly for the reactions requiring high activa...
Gespeichert in:
Veröffentlicht in: | ChemCatChem 2024-10, Vol.16 (19), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | |
container_title | ChemCatChem |
container_volume | 16 |
creator | Choi, Byeonghoon Lim, Chan Kyu Kim, Minjun Bang, Kodong Park, Bumjin Lee, Hee‐Seung Song, Hyunjoon |
description | Semiconductor hybrid structures containing multiple components have been considered an ideal photocatalyst design to generate long‐lived charge‐separated states. The reaction activity is highly susceptible to the catalyst component and morphology, particularly for the reactions requiring high activation energies, such as a CO2 reduction reaction (CO2RR). In this study, we selected g‐C3N4 and Cu2O as photocatalytic components having bandgaps suitable for CO2RR. Our approach involved establishing robust electric junctions between these domains by direct growth of Cu on g‐C3N4 via a polyol process. The resulting g‐C3N4/Cu2O hybrid was employed as photocatalysts in an aqueous medium without hole acceptors. The catalyst exhibited notable activities for CO (94 μmol gcat−1 h−1) and CH4 production (218 μmol gcat−1 h−1), maintaining stability for over 6 h. The inherent synergy between g‐C3N4 and Cu2O, facilitated by the formation of conductive junctions, enabled efficient electron transfer to promote CO2RR. These findings ensured the importance of junctions and interfaces in the hybrid catalyst structures for unlocking superior photocatalytic CO2RR performance.
Robust and well‐defined heterojunctions were formed by growing Cu2O nanocubes directly on the g‐C3N4 sheets. The resulting g‐C3N4/Cu2O hybrids exhibited high photocatalytic activities of CO2 reduction into CO and CH4 with oxygen evolution in aqueous medium without sacrificial reagents. |
doi_str_mv | 10.1002/cctc.202400759 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3113535202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113535202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2029-8308ee46007dbd3d2615486115362adde987a3da743eb6ec2b9a952c143f95253</originalsourceid><addsrcrecordid>eNqFUMtOwzAQjBBIlMKVsyUucEix47x8rEJbiiqKSjlHju0QV20cbEel_8EH4zZQjpx2tTOzszued43gAEEY3DNm2SCAQQhhEpETr4fSOPFxSsjpsU_huXdhzArCmOAk6nlfC1W0xoKntmZWqhqMld7QQ6dKkKmmEfp2egfmn5IL4KYTTZtKWslARnXhBs_S6j02qitaM2HA8KMVqjW_-INUB-1LpazSgredz1baSrUWvFKmZSmZpGuwEPRd1NZcemclXRtx9VP73tt4tMwe_dl8Ms2GM5-5N4mfYpgKEcbuX15wzIMYRWEaIxThOKCcC5ImFHOahFgUsWBBQSiJAoZCXLoa4b530-1ttHJHG5uvVKtrZ5ljhHCEI-fjWIOOxbQyRosyb7TcUL3LEcz3yef75PNj8k5AOsFWrsXuH3aeZcvsT_sNAQqJVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113535202</pqid></control><display><type>article</type><title>Robust Junction Formation of Copper(I) Oxide on Graphitic Carbon Nitride Enhances Aqueous Carbon Dioxide Photoreduction without Sacrificial Reagents</title><source>Wiley Blackwell Journals</source><creator>Choi, Byeonghoon ; Lim, Chan Kyu ; Kim, Minjun ; Bang, Kodong ; Park, Bumjin ; Lee, Hee‐Seung ; Song, Hyunjoon</creator><creatorcontrib>Choi, Byeonghoon ; Lim, Chan Kyu ; Kim, Minjun ; Bang, Kodong ; Park, Bumjin ; Lee, Hee‐Seung ; Song, Hyunjoon</creatorcontrib><description>Semiconductor hybrid structures containing multiple components have been considered an ideal photocatalyst design to generate long‐lived charge‐separated states. The reaction activity is highly susceptible to the catalyst component and morphology, particularly for the reactions requiring high activation energies, such as a CO2 reduction reaction (CO2RR). In this study, we selected g‐C3N4 and Cu2O as photocatalytic components having bandgaps suitable for CO2RR. Our approach involved establishing robust electric junctions between these domains by direct growth of Cu on g‐C3N4 via a polyol process. The resulting g‐C3N4/Cu2O hybrid was employed as photocatalysts in an aqueous medium without hole acceptors. The catalyst exhibited notable activities for CO (94 μmol gcat−1 h−1) and CH4 production (218 μmol gcat−1 h−1), maintaining stability for over 6 h. The inherent synergy between g‐C3N4 and Cu2O, facilitated by the formation of conductive junctions, enabled efficient electron transfer to promote CO2RR. These findings ensured the importance of junctions and interfaces in the hybrid catalyst structures for unlocking superior photocatalytic CO2RR performance.
Robust and well‐defined heterojunctions were formed by growing Cu2O nanocubes directly on the g‐C3N4 sheets. The resulting g‐C3N4/Cu2O hybrids exhibited high photocatalytic activities of CO2 reduction into CO and CH4 with oxygen evolution in aqueous medium without sacrificial reagents.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202400759</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aqueous solutions ; Carbon dioxide ; carbon dioxide reduction ; Carbon nitride ; Catalysts ; charge transfer ; Chemical reduction ; Copper ; Copper oxides ; Electrical junctions ; Electron transfer ; heterojunction ; Hybrid structures ; Photocatalysis ; Photocatalysts ; Photochemical reactions ; Reagents ; Robustness</subject><ispartof>ChemCatChem, 2024-10, Vol.16 (19), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2029-8308ee46007dbd3d2615486115362adde987a3da743eb6ec2b9a952c143f95253</cites><orcidid>0000-0002-1565-5697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.202400759$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.202400759$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Choi, Byeonghoon</creatorcontrib><creatorcontrib>Lim, Chan Kyu</creatorcontrib><creatorcontrib>Kim, Minjun</creatorcontrib><creatorcontrib>Bang, Kodong</creatorcontrib><creatorcontrib>Park, Bumjin</creatorcontrib><creatorcontrib>Lee, Hee‐Seung</creatorcontrib><creatorcontrib>Song, Hyunjoon</creatorcontrib><title>Robust Junction Formation of Copper(I) Oxide on Graphitic Carbon Nitride Enhances Aqueous Carbon Dioxide Photoreduction without Sacrificial Reagents</title><title>ChemCatChem</title><description>Semiconductor hybrid structures containing multiple components have been considered an ideal photocatalyst design to generate long‐lived charge‐separated states. The reaction activity is highly susceptible to the catalyst component and morphology, particularly for the reactions requiring high activation energies, such as a CO2 reduction reaction (CO2RR). In this study, we selected g‐C3N4 and Cu2O as photocatalytic components having bandgaps suitable for CO2RR. Our approach involved establishing robust electric junctions between these domains by direct growth of Cu on g‐C3N4 via a polyol process. The resulting g‐C3N4/Cu2O hybrid was employed as photocatalysts in an aqueous medium without hole acceptors. The catalyst exhibited notable activities for CO (94 μmol gcat−1 h−1) and CH4 production (218 μmol gcat−1 h−1), maintaining stability for over 6 h. The inherent synergy between g‐C3N4 and Cu2O, facilitated by the formation of conductive junctions, enabled efficient electron transfer to promote CO2RR. These findings ensured the importance of junctions and interfaces in the hybrid catalyst structures for unlocking superior photocatalytic CO2RR performance.
Robust and well‐defined heterojunctions were formed by growing Cu2O nanocubes directly on the g‐C3N4 sheets. The resulting g‐C3N4/Cu2O hybrids exhibited high photocatalytic activities of CO2 reduction into CO and CH4 with oxygen evolution in aqueous medium without sacrificial reagents.</description><subject>Aqueous solutions</subject><subject>Carbon dioxide</subject><subject>carbon dioxide reduction</subject><subject>Carbon nitride</subject><subject>Catalysts</subject><subject>charge transfer</subject><subject>Chemical reduction</subject><subject>Copper</subject><subject>Copper oxides</subject><subject>Electrical junctions</subject><subject>Electron transfer</subject><subject>heterojunction</subject><subject>Hybrid structures</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photochemical reactions</subject><subject>Reagents</subject><subject>Robustness</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQjBBIlMKVsyUucEix47x8rEJbiiqKSjlHju0QV20cbEel_8EH4zZQjpx2tTOzszued43gAEEY3DNm2SCAQQhhEpETr4fSOPFxSsjpsU_huXdhzArCmOAk6nlfC1W0xoKntmZWqhqMld7QQ6dKkKmmEfp2egfmn5IL4KYTTZtKWslARnXhBs_S6j02qitaM2HA8KMVqjW_-INUB-1LpazSgredz1baSrUWvFKmZSmZpGuwEPRd1NZcemclXRtx9VP73tt4tMwe_dl8Ms2GM5-5N4mfYpgKEcbuX15wzIMYRWEaIxThOKCcC5ImFHOahFgUsWBBQSiJAoZCXLoa4b530-1ttHJHG5uvVKtrZ5ljhHCEI-fjWIOOxbQyRosyb7TcUL3LEcz3yef75PNj8k5AOsFWrsXuH3aeZcvsT_sNAQqJVQ</recordid><startdate>20241007</startdate><enddate>20241007</enddate><creator>Choi, Byeonghoon</creator><creator>Lim, Chan Kyu</creator><creator>Kim, Minjun</creator><creator>Bang, Kodong</creator><creator>Park, Bumjin</creator><creator>Lee, Hee‐Seung</creator><creator>Song, Hyunjoon</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1565-5697</orcidid></search><sort><creationdate>20241007</creationdate><title>Robust Junction Formation of Copper(I) Oxide on Graphitic Carbon Nitride Enhances Aqueous Carbon Dioxide Photoreduction without Sacrificial Reagents</title><author>Choi, Byeonghoon ; Lim, Chan Kyu ; Kim, Minjun ; Bang, Kodong ; Park, Bumjin ; Lee, Hee‐Seung ; Song, Hyunjoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2029-8308ee46007dbd3d2615486115362adde987a3da743eb6ec2b9a952c143f95253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aqueous solutions</topic><topic>Carbon dioxide</topic><topic>carbon dioxide reduction</topic><topic>Carbon nitride</topic><topic>Catalysts</topic><topic>charge transfer</topic><topic>Chemical reduction</topic><topic>Copper</topic><topic>Copper oxides</topic><topic>Electrical junctions</topic><topic>Electron transfer</topic><topic>heterojunction</topic><topic>Hybrid structures</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photochemical reactions</topic><topic>Reagents</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Byeonghoon</creatorcontrib><creatorcontrib>Lim, Chan Kyu</creatorcontrib><creatorcontrib>Kim, Minjun</creatorcontrib><creatorcontrib>Bang, Kodong</creatorcontrib><creatorcontrib>Park, Bumjin</creatorcontrib><creatorcontrib>Lee, Hee‐Seung</creatorcontrib><creatorcontrib>Song, Hyunjoon</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Byeonghoon</au><au>Lim, Chan Kyu</au><au>Kim, Minjun</au><au>Bang, Kodong</au><au>Park, Bumjin</au><au>Lee, Hee‐Seung</au><au>Song, Hyunjoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Junction Formation of Copper(I) Oxide on Graphitic Carbon Nitride Enhances Aqueous Carbon Dioxide Photoreduction without Sacrificial Reagents</atitle><jtitle>ChemCatChem</jtitle><date>2024-10-07</date><risdate>2024</risdate><volume>16</volume><issue>19</issue><epage>n/a</epage><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Semiconductor hybrid structures containing multiple components have been considered an ideal photocatalyst design to generate long‐lived charge‐separated states. The reaction activity is highly susceptible to the catalyst component and morphology, particularly for the reactions requiring high activation energies, such as a CO2 reduction reaction (CO2RR). In this study, we selected g‐C3N4 and Cu2O as photocatalytic components having bandgaps suitable for CO2RR. Our approach involved establishing robust electric junctions between these domains by direct growth of Cu on g‐C3N4 via a polyol process. The resulting g‐C3N4/Cu2O hybrid was employed as photocatalysts in an aqueous medium without hole acceptors. The catalyst exhibited notable activities for CO (94 μmol gcat−1 h−1) and CH4 production (218 μmol gcat−1 h−1), maintaining stability for over 6 h. The inherent synergy between g‐C3N4 and Cu2O, facilitated by the formation of conductive junctions, enabled efficient electron transfer to promote CO2RR. These findings ensured the importance of junctions and interfaces in the hybrid catalyst structures for unlocking superior photocatalytic CO2RR performance.
Robust and well‐defined heterojunctions were formed by growing Cu2O nanocubes directly on the g‐C3N4 sheets. The resulting g‐C3N4/Cu2O hybrids exhibited high photocatalytic activities of CO2 reduction into CO and CH4 with oxygen evolution in aqueous medium without sacrificial reagents.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.202400759</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1565-5697</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-3880 |
ispartof | ChemCatChem, 2024-10, Vol.16 (19), p.n/a |
issn | 1867-3880 1867-3899 |
language | eng |
recordid | cdi_proquest_journals_3113535202 |
source | Wiley Blackwell Journals |
subjects | Aqueous solutions Carbon dioxide carbon dioxide reduction Carbon nitride Catalysts charge transfer Chemical reduction Copper Copper oxides Electrical junctions Electron transfer heterojunction Hybrid structures Photocatalysis Photocatalysts Photochemical reactions Reagents Robustness |
title | Robust Junction Formation of Copper(I) Oxide on Graphitic Carbon Nitride Enhances Aqueous Carbon Dioxide Photoreduction without Sacrificial Reagents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Junction%20Formation%20of%20Copper(I)%20Oxide%20on%20Graphitic%20Carbon%20Nitride%20Enhances%20Aqueous%20Carbon%20Dioxide%20Photoreduction%20without%20Sacrificial%20Reagents&rft.jtitle=ChemCatChem&rft.au=Choi,%20Byeonghoon&rft.date=2024-10-07&rft.volume=16&rft.issue=19&rft.epage=n/a&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202400759&rft_dat=%3Cproquest_cross%3E3113535202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113535202&rft_id=info:pmid/&rfr_iscdi=true |