Mesoporous N‐Doped Carbon Nanospheres as Anode Material for Sodium Ion Batteries with High Rate Capability and Superior Power Densities

Optimized sodium ion battery (SIB) carbon anodes with high stability supporting high power densities are a much‐needed material class and therefore intensively researched. The optimum graphitization degree to accommodate sodium ions, while providing high conductivity, as well as the influence of par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-10, Vol.34 (41), p.n/a
Hauptverfasser: Rützler, Alexander, Büttner, Jan, Oechsler, Jan, Balaghi, S. Esmael, Küspert, Sven, Ortlieb, Niklas, Fischer, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 41
container_start_page
container_title Advanced functional materials
container_volume 34
creator Rützler, Alexander
Büttner, Jan
Oechsler, Jan
Balaghi, S. Esmael
Küspert, Sven
Ortlieb, Niklas
Fischer, Anna
description Optimized sodium ion battery (SIB) carbon anodes with high stability supporting high power densities are a much‐needed material class and therefore intensively researched. The optimum graphitization degree to accommodate sodium ions, while providing high conductivity, as well as the influence of particle size distribution or pore sizes on the performance of carbon anodes, is one of the most discussed topics in this field. While a lot of studies have been published discussing these questions, the convoluted nature of these parameters, originating from material synthesis constraints, usually prevents their independent optimization. Based on Mesoporous N‐doped Carbon Nanospheres (MPNC) as model carbon material systems, the graphitization temperaturefor spherical particles with a monomodal particle size distribution (≈280 nm) and a narrow pore size distribution (≈30 nm) is optimized for faradaic sodium ion storage (plateau capacity) and electrodes with a very high power density of 2680 W kg−1 at 1000 mA g−1 and a remarkable capacity retention over 2000 cycles of 86 %, only losing 0.04 % of its specific capacity per cycle, are demonstrated. Mesoporous N‐doped Carbon Nanospheres (MPNC) with monodisperse particle size, narrow pore size distribution and optimized graphitization temperature are presented as high‐performance anode material for faradaic sodium ion storage, achieving a very high power density of 2680 W kg−1 at 1000 mA g−1 and a remarkable capacity retention over 2000 cycles of 86 %.
doi_str_mv 10.1002/adfm.202401188
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3113495187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113495187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2428-28b282049de88491f4ec5c0e73813cd7252801cbf64c2b734efb0046e299e5093</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMltiTrEdJ3HG0lJaqQVEQWKznORCXbVxsBNV3VjZeEaeBFdFZWS6k-777nQ_QpeU9Cgh7FoV5brHCOOEUiGOUIfGNA5CwsTxoaevp-jMuSUhNElC3kGfM3CmNta0Dt9_f3wNTQ0FHiibmQrfq8q4egEWHFYO9ytTAJ6pBqxWK1wai-em0O0aTzx8o5rdwKMb3SzwWL8t8JNn_bJaZXqlmy1WVYHnbe0x7z6aDVg8hMrpxmvn6KRUKwcXv7WLXka3z4NxMH24mwz60yBnnImAiYwJRnhagBA8pSWHPMoJJKGgYV4kLGKC0DwrY56zzP8IZUYIj4GlKUQkDbvoar-3tua9BdfIpWlt5U_KkNKQpxEViad6eyq3xjkLpaytXiu7lZTIXdxyF7c8xO2FdC9s9Aq2_9CyPxzN_twfygCFWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113495187</pqid></control><display><type>article</type><title>Mesoporous N‐Doped Carbon Nanospheres as Anode Material for Sodium Ion Batteries with High Rate Capability and Superior Power Densities</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rützler, Alexander ; Büttner, Jan ; Oechsler, Jan ; Balaghi, S. Esmael ; Küspert, Sven ; Ortlieb, Niklas ; Fischer, Anna</creator><creatorcontrib>Rützler, Alexander ; Büttner, Jan ; Oechsler, Jan ; Balaghi, S. Esmael ; Küspert, Sven ; Ortlieb, Niklas ; Fischer, Anna</creatorcontrib><description>Optimized sodium ion battery (SIB) carbon anodes with high stability supporting high power densities are a much‐needed material class and therefore intensively researched. The optimum graphitization degree to accommodate sodium ions, while providing high conductivity, as well as the influence of particle size distribution or pore sizes on the performance of carbon anodes, is one of the most discussed topics in this field. While a lot of studies have been published discussing these questions, the convoluted nature of these parameters, originating from material synthesis constraints, usually prevents their independent optimization. Based on Mesoporous N‐doped Carbon Nanospheres (MPNC) as model carbon material systems, the graphitization temperaturefor spherical particles with a monomodal particle size distribution (≈280 nm) and a narrow pore size distribution (≈30 nm) is optimized for faradaic sodium ion storage (plateau capacity) and electrodes with a very high power density of 2680 W kg−1 at 1000 mA g−1 and a remarkable capacity retention over 2000 cycles of 86 %, only losing 0.04 % of its specific capacity per cycle, are demonstrated. Mesoporous N‐doped Carbon Nanospheres (MPNC) with monodisperse particle size, narrow pore size distribution and optimized graphitization temperature are presented as high‐performance anode material for faradaic sodium ion storage, achieving a very high power density of 2680 W kg−1 at 1000 mA g−1 and a remarkable capacity retention over 2000 cycles of 86 %.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202401188</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>anode ; Anodes ; Carbon ; Electrode materials ; Graphitization ; high power density ; high‐rate capability ; Ion storage ; mesoporous carbon Nanospheres (MPNC) ; Nanospheres ; Particle size ; Particle size distribution ; Pore size distribution ; Sodium ; sodium ion battery ; Sodium-ion batteries</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (41), p.n/a</ispartof><rights>2024 The Author(s). Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2428-28b282049de88491f4ec5c0e73813cd7252801cbf64c2b734efb0046e299e5093</cites><orcidid>0000-0002-2747-0710 ; 0000-0003-4567-3009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202401188$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202401188$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Rützler, Alexander</creatorcontrib><creatorcontrib>Büttner, Jan</creatorcontrib><creatorcontrib>Oechsler, Jan</creatorcontrib><creatorcontrib>Balaghi, S. Esmael</creatorcontrib><creatorcontrib>Küspert, Sven</creatorcontrib><creatorcontrib>Ortlieb, Niklas</creatorcontrib><creatorcontrib>Fischer, Anna</creatorcontrib><title>Mesoporous N‐Doped Carbon Nanospheres as Anode Material for Sodium Ion Batteries with High Rate Capability and Superior Power Densities</title><title>Advanced functional materials</title><description>Optimized sodium ion battery (SIB) carbon anodes with high stability supporting high power densities are a much‐needed material class and therefore intensively researched. The optimum graphitization degree to accommodate sodium ions, while providing high conductivity, as well as the influence of particle size distribution or pore sizes on the performance of carbon anodes, is one of the most discussed topics in this field. While a lot of studies have been published discussing these questions, the convoluted nature of these parameters, originating from material synthesis constraints, usually prevents their independent optimization. Based on Mesoporous N‐doped Carbon Nanospheres (MPNC) as model carbon material systems, the graphitization temperaturefor spherical particles with a monomodal particle size distribution (≈280 nm) and a narrow pore size distribution (≈30 nm) is optimized for faradaic sodium ion storage (plateau capacity) and electrodes with a very high power density of 2680 W kg−1 at 1000 mA g−1 and a remarkable capacity retention over 2000 cycles of 86 %, only losing 0.04 % of its specific capacity per cycle, are demonstrated. Mesoporous N‐doped Carbon Nanospheres (MPNC) with monodisperse particle size, narrow pore size distribution and optimized graphitization temperature are presented as high‐performance anode material for faradaic sodium ion storage, achieving a very high power density of 2680 W kg−1 at 1000 mA g−1 and a remarkable capacity retention over 2000 cycles of 86 %.</description><subject>anode</subject><subject>Anodes</subject><subject>Carbon</subject><subject>Electrode materials</subject><subject>Graphitization</subject><subject>high power density</subject><subject>high‐rate capability</subject><subject>Ion storage</subject><subject>mesoporous carbon Nanospheres (MPNC)</subject><subject>Nanospheres</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Pore size distribution</subject><subject>Sodium</subject><subject>sodium ion battery</subject><subject>Sodium-ion batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkLFOwzAQhi0EEqWwMltiTrEdJ3HG0lJaqQVEQWKznORCXbVxsBNV3VjZeEaeBFdFZWS6k-777nQ_QpeU9Cgh7FoV5brHCOOEUiGOUIfGNA5CwsTxoaevp-jMuSUhNElC3kGfM3CmNta0Dt9_f3wNTQ0FHiibmQrfq8q4egEWHFYO9ytTAJ6pBqxWK1wai-em0O0aTzx8o5rdwKMb3SzwWL8t8JNn_bJaZXqlmy1WVYHnbe0x7z6aDVg8hMrpxmvn6KRUKwcXv7WLXka3z4NxMH24mwz60yBnnImAiYwJRnhagBA8pSWHPMoJJKGgYV4kLGKC0DwrY56zzP8IZUYIj4GlKUQkDbvoar-3tua9BdfIpWlt5U_KkNKQpxEViad6eyq3xjkLpaytXiu7lZTIXdxyF7c8xO2FdC9s9Aq2_9CyPxzN_twfygCFWQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Rützler, Alexander</creator><creator>Büttner, Jan</creator><creator>Oechsler, Jan</creator><creator>Balaghi, S. Esmael</creator><creator>Küspert, Sven</creator><creator>Ortlieb, Niklas</creator><creator>Fischer, Anna</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2747-0710</orcidid><orcidid>https://orcid.org/0000-0003-4567-3009</orcidid></search><sort><creationdate>20241001</creationdate><title>Mesoporous N‐Doped Carbon Nanospheres as Anode Material for Sodium Ion Batteries with High Rate Capability and Superior Power Densities</title><author>Rützler, Alexander ; Büttner, Jan ; Oechsler, Jan ; Balaghi, S. Esmael ; Küspert, Sven ; Ortlieb, Niklas ; Fischer, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2428-28b282049de88491f4ec5c0e73813cd7252801cbf64c2b734efb0046e299e5093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anode</topic><topic>Anodes</topic><topic>Carbon</topic><topic>Electrode materials</topic><topic>Graphitization</topic><topic>high power density</topic><topic>high‐rate capability</topic><topic>Ion storage</topic><topic>mesoporous carbon Nanospheres (MPNC)</topic><topic>Nanospheres</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Pore size distribution</topic><topic>Sodium</topic><topic>sodium ion battery</topic><topic>Sodium-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rützler, Alexander</creatorcontrib><creatorcontrib>Büttner, Jan</creatorcontrib><creatorcontrib>Oechsler, Jan</creatorcontrib><creatorcontrib>Balaghi, S. Esmael</creatorcontrib><creatorcontrib>Küspert, Sven</creatorcontrib><creatorcontrib>Ortlieb, Niklas</creatorcontrib><creatorcontrib>Fischer, Anna</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rützler, Alexander</au><au>Büttner, Jan</au><au>Oechsler, Jan</au><au>Balaghi, S. Esmael</au><au>Küspert, Sven</au><au>Ortlieb, Niklas</au><au>Fischer, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoporous N‐Doped Carbon Nanospheres as Anode Material for Sodium Ion Batteries with High Rate Capability and Superior Power Densities</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>41</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Optimized sodium ion battery (SIB) carbon anodes with high stability supporting high power densities are a much‐needed material class and therefore intensively researched. The optimum graphitization degree to accommodate sodium ions, while providing high conductivity, as well as the influence of particle size distribution or pore sizes on the performance of carbon anodes, is one of the most discussed topics in this field. While a lot of studies have been published discussing these questions, the convoluted nature of these parameters, originating from material synthesis constraints, usually prevents their independent optimization. Based on Mesoporous N‐doped Carbon Nanospheres (MPNC) as model carbon material systems, the graphitization temperaturefor spherical particles with a monomodal particle size distribution (≈280 nm) and a narrow pore size distribution (≈30 nm) is optimized for faradaic sodium ion storage (plateau capacity) and electrodes with a very high power density of 2680 W kg−1 at 1000 mA g−1 and a remarkable capacity retention over 2000 cycles of 86 %, only losing 0.04 % of its specific capacity per cycle, are demonstrated. Mesoporous N‐doped Carbon Nanospheres (MPNC) with monodisperse particle size, narrow pore size distribution and optimized graphitization temperature are presented as high‐performance anode material for faradaic sodium ion storage, achieving a very high power density of 2680 W kg−1 at 1000 mA g−1 and a remarkable capacity retention over 2000 cycles of 86 %.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202401188</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2747-0710</orcidid><orcidid>https://orcid.org/0000-0003-4567-3009</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-10, Vol.34 (41), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3113495187
source Wiley Online Library Journals Frontfile Complete
subjects anode
Anodes
Carbon
Electrode materials
Graphitization
high power density
high‐rate capability
Ion storage
mesoporous carbon Nanospheres (MPNC)
Nanospheres
Particle size
Particle size distribution
Pore size distribution
Sodium
sodium ion battery
Sodium-ion batteries
title Mesoporous N‐Doped Carbon Nanospheres as Anode Material for Sodium Ion Batteries with High Rate Capability and Superior Power Densities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoporous%20N%E2%80%90Doped%20Carbon%20Nanospheres%20as%20Anode%20Material%20for%20Sodium%20Ion%20Batteries%20with%20High%20Rate%20Capability%20and%20Superior%20Power%20Densities&rft.jtitle=Advanced%20functional%20materials&rft.au=R%C3%BCtzler,%20Alexander&rft.date=2024-10-01&rft.volume=34&rft.issue=41&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202401188&rft_dat=%3Cproquest_cross%3E3113495187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113495187&rft_id=info:pmid/&rfr_iscdi=true