Mesoporous N‐Doped Carbon Nanospheres as Anode Material for Sodium Ion Batteries with High Rate Capability and Superior Power Densities
Optimized sodium ion battery (SIB) carbon anodes with high stability supporting high power densities are a much‐needed material class and therefore intensively researched. The optimum graphitization degree to accommodate sodium ions, while providing high conductivity, as well as the influence of par...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-10, Vol.34 (41), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 41 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Rützler, Alexander Büttner, Jan Oechsler, Jan Balaghi, S. Esmael Küspert, Sven Ortlieb, Niklas Fischer, Anna |
description | Optimized sodium ion battery (SIB) carbon anodes with high stability supporting high power densities are a much‐needed material class and therefore intensively researched. The optimum graphitization degree to accommodate sodium ions, while providing high conductivity, as well as the influence of particle size distribution or pore sizes on the performance of carbon anodes, is one of the most discussed topics in this field. While a lot of studies have been published discussing these questions, the convoluted nature of these parameters, originating from material synthesis constraints, usually prevents their independent optimization. Based on Mesoporous N‐doped Carbon Nanospheres (MPNC) as model carbon material systems, the graphitization temperaturefor spherical particles with a monomodal particle size distribution (≈280 nm) and a narrow pore size distribution (≈30 nm) is optimized for faradaic sodium ion storage (plateau capacity) and electrodes with a very high power density of 2680 W kg−1 at 1000 mA g−1 and a remarkable capacity retention over 2000 cycles of 86 %, only losing 0.04 % of its specific capacity per cycle, are demonstrated.
Mesoporous N‐doped Carbon Nanospheres (MPNC) with monodisperse particle size, narrow pore size distribution and optimized graphitization temperature are presented as high‐performance anode material for faradaic sodium ion storage, achieving a very high power density of 2680 W kg−1 at 1000 mA g−1 and a remarkable capacity retention over 2000 cycles of 86 %. |
doi_str_mv | 10.1002/adfm.202401188 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3113495187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113495187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2428-28b282049de88491f4ec5c0e73813cd7252801cbf64c2b734efb0046e299e5093</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMltiTrEdJ3HG0lJaqQVEQWKznORCXbVxsBNV3VjZeEaeBFdFZWS6k-777nQ_QpeU9Cgh7FoV5brHCOOEUiGOUIfGNA5CwsTxoaevp-jMuSUhNElC3kGfM3CmNta0Dt9_f3wNTQ0FHiibmQrfq8q4egEWHFYO9ytTAJ6pBqxWK1wai-em0O0aTzx8o5rdwKMb3SzwWL8t8JNn_bJaZXqlmy1WVYHnbe0x7z6aDVg8hMrpxmvn6KRUKwcXv7WLXka3z4NxMH24mwz60yBnnImAiYwJRnhagBA8pSWHPMoJJKGgYV4kLGKC0DwrY56zzP8IZUYIj4GlKUQkDbvoar-3tua9BdfIpWlt5U_KkNKQpxEViad6eyq3xjkLpaytXiu7lZTIXdxyF7c8xO2FdC9s9Aq2_9CyPxzN_twfygCFWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113495187</pqid></control><display><type>article</type><title>Mesoporous N‐Doped Carbon Nanospheres as Anode Material for Sodium Ion Batteries with High Rate Capability and Superior Power Densities</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rützler, Alexander ; Büttner, Jan ; Oechsler, Jan ; Balaghi, S. Esmael ; Küspert, Sven ; Ortlieb, Niklas ; Fischer, Anna</creator><creatorcontrib>Rützler, Alexander ; Büttner, Jan ; Oechsler, Jan ; Balaghi, S. Esmael ; Küspert, Sven ; Ortlieb, Niklas ; Fischer, Anna</creatorcontrib><description>Optimized sodium ion battery (SIB) carbon anodes with high stability supporting high power densities are a much‐needed material class and therefore intensively researched. The optimum graphitization degree to accommodate sodium ions, while providing high conductivity, as well as the influence of particle size distribution or pore sizes on the performance of carbon anodes, is one of the most discussed topics in this field. While a lot of studies have been published discussing these questions, the convoluted nature of these parameters, originating from material synthesis constraints, usually prevents their independent optimization. Based on Mesoporous N‐doped Carbon Nanospheres (MPNC) as model carbon material systems, the graphitization temperaturefor spherical particles with a monomodal particle size distribution (≈280 nm) and a narrow pore size distribution (≈30 nm) is optimized for faradaic sodium ion storage (plateau capacity) and electrodes with a very high power density of 2680 W kg−1 at 1000 mA g−1 and a remarkable capacity retention over 2000 cycles of 86 %, only losing 0.04 % of its specific capacity per cycle, are demonstrated.
Mesoporous N‐doped Carbon Nanospheres (MPNC) with monodisperse particle size, narrow pore size distribution and optimized graphitization temperature are presented as high‐performance anode material for faradaic sodium ion storage, achieving a very high power density of 2680 W kg−1 at 1000 mA g−1 and a remarkable capacity retention over 2000 cycles of 86 %.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202401188</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>anode ; Anodes ; Carbon ; Electrode materials ; Graphitization ; high power density ; high‐rate capability ; Ion storage ; mesoporous carbon Nanospheres (MPNC) ; Nanospheres ; Particle size ; Particle size distribution ; Pore size distribution ; Sodium ; sodium ion battery ; Sodium-ion batteries</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (41), p.n/a</ispartof><rights>2024 The Author(s). Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2428-28b282049de88491f4ec5c0e73813cd7252801cbf64c2b734efb0046e299e5093</cites><orcidid>0000-0002-2747-0710 ; 0000-0003-4567-3009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202401188$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202401188$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Rützler, Alexander</creatorcontrib><creatorcontrib>Büttner, Jan</creatorcontrib><creatorcontrib>Oechsler, Jan</creatorcontrib><creatorcontrib>Balaghi, S. Esmael</creatorcontrib><creatorcontrib>Küspert, Sven</creatorcontrib><creatorcontrib>Ortlieb, Niklas</creatorcontrib><creatorcontrib>Fischer, Anna</creatorcontrib><title>Mesoporous N‐Doped Carbon Nanospheres as Anode Material for Sodium Ion Batteries with High Rate Capability and Superior Power Densities</title><title>Advanced functional materials</title><description>Optimized sodium ion battery (SIB) carbon anodes with high stability supporting high power densities are a much‐needed material class and therefore intensively researched. The optimum graphitization degree to accommodate sodium ions, while providing high conductivity, as well as the influence of particle size distribution or pore sizes on the performance of carbon anodes, is one of the most discussed topics in this field. While a lot of studies have been published discussing these questions, the convoluted nature of these parameters, originating from material synthesis constraints, usually prevents their independent optimization. Based on Mesoporous N‐doped Carbon Nanospheres (MPNC) as model carbon material systems, the graphitization temperaturefor spherical particles with a monomodal particle size distribution (≈280 nm) and a narrow pore size distribution (≈30 nm) is optimized for faradaic sodium ion storage (plateau capacity) and electrodes with a very high power density of 2680 W kg−1 at 1000 mA g−1 and a remarkable capacity retention over 2000 cycles of 86 %, only losing 0.04 % of its specific capacity per cycle, are demonstrated.
Mesoporous N‐doped Carbon Nanospheres (MPNC) with monodisperse particle size, narrow pore size distribution and optimized graphitization temperature are presented as high‐performance anode material for faradaic sodium ion storage, achieving a very high power density of 2680 W kg−1 at 1000 mA g−1 and a remarkable capacity retention over 2000 cycles of 86 %.</description><subject>anode</subject><subject>Anodes</subject><subject>Carbon</subject><subject>Electrode materials</subject><subject>Graphitization</subject><subject>high power density</subject><subject>high‐rate capability</subject><subject>Ion storage</subject><subject>mesoporous carbon Nanospheres (MPNC)</subject><subject>Nanospheres</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Pore size distribution</subject><subject>Sodium</subject><subject>sodium ion battery</subject><subject>Sodium-ion batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkLFOwzAQhi0EEqWwMltiTrEdJ3HG0lJaqQVEQWKznORCXbVxsBNV3VjZeEaeBFdFZWS6k-777nQ_QpeU9Cgh7FoV5brHCOOEUiGOUIfGNA5CwsTxoaevp-jMuSUhNElC3kGfM3CmNta0Dt9_f3wNTQ0FHiibmQrfq8q4egEWHFYO9ytTAJ6pBqxWK1wai-em0O0aTzx8o5rdwKMb3SzwWL8t8JNn_bJaZXqlmy1WVYHnbe0x7z6aDVg8hMrpxmvn6KRUKwcXv7WLXka3z4NxMH24mwz60yBnnImAiYwJRnhagBA8pSWHPMoJJKGgYV4kLGKC0DwrY56zzP8IZUYIj4GlKUQkDbvoar-3tua9BdfIpWlt5U_KkNKQpxEViad6eyq3xjkLpaytXiu7lZTIXdxyF7c8xO2FdC9s9Aq2_9CyPxzN_twfygCFWQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Rützler, Alexander</creator><creator>Büttner, Jan</creator><creator>Oechsler, Jan</creator><creator>Balaghi, S. Esmael</creator><creator>Küspert, Sven</creator><creator>Ortlieb, Niklas</creator><creator>Fischer, Anna</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2747-0710</orcidid><orcidid>https://orcid.org/0000-0003-4567-3009</orcidid></search><sort><creationdate>20241001</creationdate><title>Mesoporous N‐Doped Carbon Nanospheres as Anode Material for Sodium Ion Batteries with High Rate Capability and Superior Power Densities</title><author>Rützler, Alexander ; Büttner, Jan ; Oechsler, Jan ; Balaghi, S. Esmael ; Küspert, Sven ; Ortlieb, Niklas ; Fischer, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2428-28b282049de88491f4ec5c0e73813cd7252801cbf64c2b734efb0046e299e5093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anode</topic><topic>Anodes</topic><topic>Carbon</topic><topic>Electrode materials</topic><topic>Graphitization</topic><topic>high power density</topic><topic>high‐rate capability</topic><topic>Ion storage</topic><topic>mesoporous carbon Nanospheres (MPNC)</topic><topic>Nanospheres</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Pore size distribution</topic><topic>Sodium</topic><topic>sodium ion battery</topic><topic>Sodium-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rützler, Alexander</creatorcontrib><creatorcontrib>Büttner, Jan</creatorcontrib><creatorcontrib>Oechsler, Jan</creatorcontrib><creatorcontrib>Balaghi, S. Esmael</creatorcontrib><creatorcontrib>Küspert, Sven</creatorcontrib><creatorcontrib>Ortlieb, Niklas</creatorcontrib><creatorcontrib>Fischer, Anna</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rützler, Alexander</au><au>Büttner, Jan</au><au>Oechsler, Jan</au><au>Balaghi, S. Esmael</au><au>Küspert, Sven</au><au>Ortlieb, Niklas</au><au>Fischer, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoporous N‐Doped Carbon Nanospheres as Anode Material for Sodium Ion Batteries with High Rate Capability and Superior Power Densities</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>41</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Optimized sodium ion battery (SIB) carbon anodes with high stability supporting high power densities are a much‐needed material class and therefore intensively researched. The optimum graphitization degree to accommodate sodium ions, while providing high conductivity, as well as the influence of particle size distribution or pore sizes on the performance of carbon anodes, is one of the most discussed topics in this field. While a lot of studies have been published discussing these questions, the convoluted nature of these parameters, originating from material synthesis constraints, usually prevents their independent optimization. Based on Mesoporous N‐doped Carbon Nanospheres (MPNC) as model carbon material systems, the graphitization temperaturefor spherical particles with a monomodal particle size distribution (≈280 nm) and a narrow pore size distribution (≈30 nm) is optimized for faradaic sodium ion storage (plateau capacity) and electrodes with a very high power density of 2680 W kg−1 at 1000 mA g−1 and a remarkable capacity retention over 2000 cycles of 86 %, only losing 0.04 % of its specific capacity per cycle, are demonstrated.
Mesoporous N‐doped Carbon Nanospheres (MPNC) with monodisperse particle size, narrow pore size distribution and optimized graphitization temperature are presented as high‐performance anode material for faradaic sodium ion storage, achieving a very high power density of 2680 W kg−1 at 1000 mA g−1 and a remarkable capacity retention over 2000 cycles of 86 %.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202401188</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2747-0710</orcidid><orcidid>https://orcid.org/0000-0003-4567-3009</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-10, Vol.34 (41), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3113495187 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | anode Anodes Carbon Electrode materials Graphitization high power density high‐rate capability Ion storage mesoporous carbon Nanospheres (MPNC) Nanospheres Particle size Particle size distribution Pore size distribution Sodium sodium ion battery Sodium-ion batteries |
title | Mesoporous N‐Doped Carbon Nanospheres as Anode Material for Sodium Ion Batteries with High Rate Capability and Superior Power Densities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoporous%20N%E2%80%90Doped%20Carbon%20Nanospheres%20as%20Anode%20Material%20for%20Sodium%20Ion%20Batteries%20with%20High%20Rate%20Capability%20and%20Superior%20Power%20Densities&rft.jtitle=Advanced%20functional%20materials&rft.au=R%C3%BCtzler,%20Alexander&rft.date=2024-10-01&rft.volume=34&rft.issue=41&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202401188&rft_dat=%3Cproquest_cross%3E3113495187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113495187&rft_id=info:pmid/&rfr_iscdi=true |