Bridging OER Electrocatalysis and Tumor Therapy: Utilizing Piezoelectric‐Hole‐Induced OER Electrocatalysis for Direct Oxygen Generation to Address Hypoxia
In addressing the challenge of hypoxia within the tumor microenvironment (TME), a significant obstacle to effective cancer therapy, this research introduces a pioneering nanozyme engineered to utilize water and oxygen as reactants. Utilizing ultrasonic piezoelectricity, this nanozyme converts these...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-10, Vol.34 (41), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 41 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Li, Shuyao Yang, Meiqi Wang, Yan Tian, Boshi Wu, Linzhi Yang, Dan Gai, Shili Yang, Piaoping |
description | In addressing the challenge of hypoxia within the tumor microenvironment (TME), a significant obstacle to effective cancer therapy, this research introduces a pioneering nanozyme engineered to utilize water and oxygen as reactants. Utilizing ultrasonic piezoelectricity, this nanozyme converts these substrates into oxygen (O2) and reactive oxygen species, thereby amplifying oxidative stress without relying on endogenous H2O2. This approach involves the strategic engineering of porous ZnSnOv:Mn nanosheets (named MZSO NSs), which are distinguished by oxygen‐rich vacancies and enhanced piezoelectric properties. This breakthrough represents the initial attempt to merge catalytic activities akin to catalase (CAT) with the electrocatalytic oxygen evolution reaction (OER), confirmed through both enzymatic reactions and electrochemical voltammetric analysis. The predominant mechanism of ultrasound‐augmented oxygen generation in MZSO is identified as piezoelectric hole‐induced OER. Supporting theoretical analyses clarify the synergistic impact of oxygen vacancies and Mn doping on the dynamics of carriers and the OER process, leading to a notable increase in catalytic efficiency. These findings highlight the potential of piezoelectric‐enhanced OER electrocatalysts to alleviate hypoxia in the TME, providing novel insights into the development of piezoelectric acoustic sensitizers for the treatment of cancer.
Synthesized ZnSnOv:Mn NSs enhance carrier utilization and ROS production through doping engineering and piezoelectric effects. Crucially, the relationship between catalase (CAT) and oxygen evolution reaction (OER) reactions is clarified, using piezoelectric‐induced OER to generate O2 in acidic environments. This method minimizes dependence on endogenous H2O2 in tumor therapies and effectively addresses O2 depletion in TME and SDT. |
doi_str_mv | 10.1002/adfm.202404169 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3113494929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113494929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2729-97cdbc18ed46dcd646334951d6bc2b836f34ff8e93128af6543288df6ba78d9f3</originalsourceid><addsrcrecordid>eNqFkctOAjEUhidGExHdum7iGuyNztQdIrcEgzGQuJuUXrBkmGI7RIaVj-AT-HA-iYMY3Ji4Oicn__edxR9Flwg2EYT4WiizbGKIKaSI8aOohhhiDQJxcnzY0dNpdBbCAkIUx4TWoo9bb9Xc5nMw7j6CbqZl4Z0UhcjKYAMQuQKT9dJ5MHnWXqzKGzAtbGa3O-LB6q3T34iVn2_vA5fpagxztZZa_S00lerO-uoKxptyrnPQ13llLqzLQeFAWymvQwCDcuU2VpxHJ0ZkQV_8zHo07XUnnUFjNO4PO-1RQ-IY8waPpZpJlGhFmZKKUUYI5S2k2EziWUKYIdSYRHOCcCIMa1GCk0QZNhNxorgh9ehq711597LWoUgXbu3z6mVKEKpclGNepZr7lPQuBK9NuvJ2KXyZIpjuOkh3HaSHDiqA74FXm-nyn3Tavuvd_7Jf3iGQCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113494929</pqid></control><display><type>article</type><title>Bridging OER Electrocatalysis and Tumor Therapy: Utilizing Piezoelectric‐Hole‐Induced OER Electrocatalysis for Direct Oxygen Generation to Address Hypoxia</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Shuyao ; Yang, Meiqi ; Wang, Yan ; Tian, Boshi ; Wu, Linzhi ; Yang, Dan ; Gai, Shili ; Yang, Piaoping</creator><creatorcontrib>Li, Shuyao ; Yang, Meiqi ; Wang, Yan ; Tian, Boshi ; Wu, Linzhi ; Yang, Dan ; Gai, Shili ; Yang, Piaoping</creatorcontrib><description>In addressing the challenge of hypoxia within the tumor microenvironment (TME), a significant obstacle to effective cancer therapy, this research introduces a pioneering nanozyme engineered to utilize water and oxygen as reactants. Utilizing ultrasonic piezoelectricity, this nanozyme converts these substrates into oxygen (O2) and reactive oxygen species, thereby amplifying oxidative stress without relying on endogenous H2O2. This approach involves the strategic engineering of porous ZnSnOv:Mn nanosheets (named MZSO NSs), which are distinguished by oxygen‐rich vacancies and enhanced piezoelectric properties. This breakthrough represents the initial attempt to merge catalytic activities akin to catalase (CAT) with the electrocatalytic oxygen evolution reaction (OER), confirmed through both enzymatic reactions and electrochemical voltammetric analysis. The predominant mechanism of ultrasound‐augmented oxygen generation in MZSO is identified as piezoelectric hole‐induced OER. Supporting theoretical analyses clarify the synergistic impact of oxygen vacancies and Mn doping on the dynamics of carriers and the OER process, leading to a notable increase in catalytic efficiency. These findings highlight the potential of piezoelectric‐enhanced OER electrocatalysts to alleviate hypoxia in the TME, providing novel insights into the development of piezoelectric acoustic sensitizers for the treatment of cancer.
Synthesized ZnSnOv:Mn NSs enhance carrier utilization and ROS production through doping engineering and piezoelectric effects. Crucially, the relationship between catalase (CAT) and oxygen evolution reaction (OER) reactions is clarified, using piezoelectric‐induced OER to generate O2 in acidic environments. This method minimizes dependence on endogenous H2O2 in tumor therapies and effectively addresses O2 depletion in TME and SDT.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202404169</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cancer ; Catalase ; Catalytic converters ; Chemical reactions ; doping strategy ; Electrocatalysis ; Electrocatalysts ; Hydrogen peroxide ; Hypoxia ; Impact analysis ; oxygen evolution reaction ; Oxygen evolution reactions ; oxygen vacancy ; Piezoelectricity ; piezo‐catalytic ; Substrates ; tumor therapy ; Tumors</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (41), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2729-97cdbc18ed46dcd646334951d6bc2b836f34ff8e93128af6543288df6ba78d9f3</cites><orcidid>0000-0002-9555-1803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202404169$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202404169$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Li, Shuyao</creatorcontrib><creatorcontrib>Yang, Meiqi</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Tian, Boshi</creatorcontrib><creatorcontrib>Wu, Linzhi</creatorcontrib><creatorcontrib>Yang, Dan</creatorcontrib><creatorcontrib>Gai, Shili</creatorcontrib><creatorcontrib>Yang, Piaoping</creatorcontrib><title>Bridging OER Electrocatalysis and Tumor Therapy: Utilizing Piezoelectric‐Hole‐Induced OER Electrocatalysis for Direct Oxygen Generation to Address Hypoxia</title><title>Advanced functional materials</title><description>In addressing the challenge of hypoxia within the tumor microenvironment (TME), a significant obstacle to effective cancer therapy, this research introduces a pioneering nanozyme engineered to utilize water and oxygen as reactants. Utilizing ultrasonic piezoelectricity, this nanozyme converts these substrates into oxygen (O2) and reactive oxygen species, thereby amplifying oxidative stress without relying on endogenous H2O2. This approach involves the strategic engineering of porous ZnSnOv:Mn nanosheets (named MZSO NSs), which are distinguished by oxygen‐rich vacancies and enhanced piezoelectric properties. This breakthrough represents the initial attempt to merge catalytic activities akin to catalase (CAT) with the electrocatalytic oxygen evolution reaction (OER), confirmed through both enzymatic reactions and electrochemical voltammetric analysis. The predominant mechanism of ultrasound‐augmented oxygen generation in MZSO is identified as piezoelectric hole‐induced OER. Supporting theoretical analyses clarify the synergistic impact of oxygen vacancies and Mn doping on the dynamics of carriers and the OER process, leading to a notable increase in catalytic efficiency. These findings highlight the potential of piezoelectric‐enhanced OER electrocatalysts to alleviate hypoxia in the TME, providing novel insights into the development of piezoelectric acoustic sensitizers for the treatment of cancer.
Synthesized ZnSnOv:Mn NSs enhance carrier utilization and ROS production through doping engineering and piezoelectric effects. Crucially, the relationship between catalase (CAT) and oxygen evolution reaction (OER) reactions is clarified, using piezoelectric‐induced OER to generate O2 in acidic environments. This method minimizes dependence on endogenous H2O2 in tumor therapies and effectively addresses O2 depletion in TME and SDT.</description><subject>Cancer</subject><subject>Catalase</subject><subject>Catalytic converters</subject><subject>Chemical reactions</subject><subject>doping strategy</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Hydrogen peroxide</subject><subject>Hypoxia</subject><subject>Impact analysis</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>oxygen vacancy</subject><subject>Piezoelectricity</subject><subject>piezo‐catalytic</subject><subject>Substrates</subject><subject>tumor therapy</subject><subject>Tumors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctOAjEUhidGExHdum7iGuyNztQdIrcEgzGQuJuUXrBkmGI7RIaVj-AT-HA-iYMY3Ji4Oicn__edxR9Flwg2EYT4WiizbGKIKaSI8aOohhhiDQJxcnzY0dNpdBbCAkIUx4TWoo9bb9Xc5nMw7j6CbqZl4Z0UhcjKYAMQuQKT9dJ5MHnWXqzKGzAtbGa3O-LB6q3T34iVn2_vA5fpagxztZZa_S00lerO-uoKxptyrnPQ13llLqzLQeFAWymvQwCDcuU2VpxHJ0ZkQV_8zHo07XUnnUFjNO4PO-1RQ-IY8waPpZpJlGhFmZKKUUYI5S2k2EziWUKYIdSYRHOCcCIMa1GCk0QZNhNxorgh9ehq711597LWoUgXbu3z6mVKEKpclGNepZr7lPQuBK9NuvJ2KXyZIpjuOkh3HaSHDiqA74FXm-nyn3Tavuvd_7Jf3iGQCA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Li, Shuyao</creator><creator>Yang, Meiqi</creator><creator>Wang, Yan</creator><creator>Tian, Boshi</creator><creator>Wu, Linzhi</creator><creator>Yang, Dan</creator><creator>Gai, Shili</creator><creator>Yang, Piaoping</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9555-1803</orcidid></search><sort><creationdate>20241001</creationdate><title>Bridging OER Electrocatalysis and Tumor Therapy: Utilizing Piezoelectric‐Hole‐Induced OER Electrocatalysis for Direct Oxygen Generation to Address Hypoxia</title><author>Li, Shuyao ; Yang, Meiqi ; Wang, Yan ; Tian, Boshi ; Wu, Linzhi ; Yang, Dan ; Gai, Shili ; Yang, Piaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2729-97cdbc18ed46dcd646334951d6bc2b836f34ff8e93128af6543288df6ba78d9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cancer</topic><topic>Catalase</topic><topic>Catalytic converters</topic><topic>Chemical reactions</topic><topic>doping strategy</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Hydrogen peroxide</topic><topic>Hypoxia</topic><topic>Impact analysis</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>oxygen vacancy</topic><topic>Piezoelectricity</topic><topic>piezo‐catalytic</topic><topic>Substrates</topic><topic>tumor therapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shuyao</creatorcontrib><creatorcontrib>Yang, Meiqi</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Tian, Boshi</creatorcontrib><creatorcontrib>Wu, Linzhi</creatorcontrib><creatorcontrib>Yang, Dan</creatorcontrib><creatorcontrib>Gai, Shili</creatorcontrib><creatorcontrib>Yang, Piaoping</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shuyao</au><au>Yang, Meiqi</au><au>Wang, Yan</au><au>Tian, Boshi</au><au>Wu, Linzhi</au><au>Yang, Dan</au><au>Gai, Shili</au><au>Yang, Piaoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging OER Electrocatalysis and Tumor Therapy: Utilizing Piezoelectric‐Hole‐Induced OER Electrocatalysis for Direct Oxygen Generation to Address Hypoxia</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>41</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>In addressing the challenge of hypoxia within the tumor microenvironment (TME), a significant obstacle to effective cancer therapy, this research introduces a pioneering nanozyme engineered to utilize water and oxygen as reactants. Utilizing ultrasonic piezoelectricity, this nanozyme converts these substrates into oxygen (O2) and reactive oxygen species, thereby amplifying oxidative stress without relying on endogenous H2O2. This approach involves the strategic engineering of porous ZnSnOv:Mn nanosheets (named MZSO NSs), which are distinguished by oxygen‐rich vacancies and enhanced piezoelectric properties. This breakthrough represents the initial attempt to merge catalytic activities akin to catalase (CAT) with the electrocatalytic oxygen evolution reaction (OER), confirmed through both enzymatic reactions and electrochemical voltammetric analysis. The predominant mechanism of ultrasound‐augmented oxygen generation in MZSO is identified as piezoelectric hole‐induced OER. Supporting theoretical analyses clarify the synergistic impact of oxygen vacancies and Mn doping on the dynamics of carriers and the OER process, leading to a notable increase in catalytic efficiency. These findings highlight the potential of piezoelectric‐enhanced OER electrocatalysts to alleviate hypoxia in the TME, providing novel insights into the development of piezoelectric acoustic sensitizers for the treatment of cancer.
Synthesized ZnSnOv:Mn NSs enhance carrier utilization and ROS production through doping engineering and piezoelectric effects. Crucially, the relationship between catalase (CAT) and oxygen evolution reaction (OER) reactions is clarified, using piezoelectric‐induced OER to generate O2 in acidic environments. This method minimizes dependence on endogenous H2O2 in tumor therapies and effectively addresses O2 depletion in TME and SDT.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202404169</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9555-1803</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-10, Vol.34 (41), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3113494929 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Cancer Catalase Catalytic converters Chemical reactions doping strategy Electrocatalysis Electrocatalysts Hydrogen peroxide Hypoxia Impact analysis oxygen evolution reaction Oxygen evolution reactions oxygen vacancy Piezoelectricity piezo‐catalytic Substrates tumor therapy Tumors |
title | Bridging OER Electrocatalysis and Tumor Therapy: Utilizing Piezoelectric‐Hole‐Induced OER Electrocatalysis for Direct Oxygen Generation to Address Hypoxia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20OER%20Electrocatalysis%20and%20Tumor%20Therapy:%20Utilizing%20Piezoelectric%E2%80%90Hole%E2%80%90Induced%20OER%20Electrocatalysis%20for%20Direct%20Oxygen%20Generation%20to%20Address%20Hypoxia&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Shuyao&rft.date=2024-10-01&rft.volume=34&rft.issue=41&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202404169&rft_dat=%3Cproquest_cross%3E3113494929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113494929&rft_id=info:pmid/&rfr_iscdi=true |