Bridging OER Electrocatalysis and Tumor Therapy: Utilizing Piezoelectric‐Hole‐Induced OER Electrocatalysis for Direct Oxygen Generation to Address Hypoxia

In addressing the challenge of hypoxia within the tumor microenvironment (TME), a significant obstacle to effective cancer therapy, this research introduces a pioneering nanozyme engineered to utilize water and oxygen as reactants. Utilizing ultrasonic piezoelectricity, this nanozyme converts these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-10, Vol.34 (41), p.n/a
Hauptverfasser: Li, Shuyao, Yang, Meiqi, Wang, Yan, Tian, Boshi, Wu, Linzhi, Yang, Dan, Gai, Shili, Yang, Piaoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 41
container_start_page
container_title Advanced functional materials
container_volume 34
creator Li, Shuyao
Yang, Meiqi
Wang, Yan
Tian, Boshi
Wu, Linzhi
Yang, Dan
Gai, Shili
Yang, Piaoping
description In addressing the challenge of hypoxia within the tumor microenvironment (TME), a significant obstacle to effective cancer therapy, this research introduces a pioneering nanozyme engineered to utilize water and oxygen as reactants. Utilizing ultrasonic piezoelectricity, this nanozyme converts these substrates into oxygen (O2) and reactive oxygen species, thereby amplifying oxidative stress without relying on endogenous H2O2. This approach involves the strategic engineering of porous ZnSnOv:Mn nanosheets (named MZSO NSs), which are distinguished by oxygen‐rich vacancies and enhanced piezoelectric properties. This breakthrough represents the initial attempt to merge catalytic activities akin to catalase (CAT) with the electrocatalytic oxygen evolution reaction (OER), confirmed through both enzymatic reactions and electrochemical voltammetric analysis. The predominant mechanism of ultrasound‐augmented oxygen generation in MZSO is identified as piezoelectric hole‐induced OER. Supporting theoretical analyses clarify the synergistic impact of oxygen vacancies and Mn doping on the dynamics of carriers and the OER process, leading to a notable increase in catalytic efficiency. These findings highlight the potential of piezoelectric‐enhanced OER electrocatalysts to alleviate hypoxia in the TME, providing novel insights into the development of piezoelectric acoustic sensitizers for the treatment of cancer. Synthesized ZnSnOv:Mn NSs enhance carrier utilization and ROS production through doping engineering and piezoelectric effects. Crucially, the relationship between catalase (CAT) and oxygen evolution reaction (OER) reactions is clarified, using piezoelectric‐induced OER to generate O2 in acidic environments. This method minimizes dependence on endogenous H2O2 in tumor therapies and effectively addresses O2 depletion in TME and SDT.
doi_str_mv 10.1002/adfm.202404169
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3113494929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113494929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2729-97cdbc18ed46dcd646334951d6bc2b836f34ff8e93128af6543288df6ba78d9f3</originalsourceid><addsrcrecordid>eNqFkctOAjEUhidGExHdum7iGuyNztQdIrcEgzGQuJuUXrBkmGI7RIaVj-AT-HA-iYMY3Ji4Oicn__edxR9Flwg2EYT4WiizbGKIKaSI8aOohhhiDQJxcnzY0dNpdBbCAkIUx4TWoo9bb9Xc5nMw7j6CbqZl4Z0UhcjKYAMQuQKT9dJ5MHnWXqzKGzAtbGa3O-LB6q3T34iVn2_vA5fpagxztZZa_S00lerO-uoKxptyrnPQ13llLqzLQeFAWymvQwCDcuU2VpxHJ0ZkQV_8zHo07XUnnUFjNO4PO-1RQ-IY8waPpZpJlGhFmZKKUUYI5S2k2EziWUKYIdSYRHOCcCIMa1GCk0QZNhNxorgh9ehq711597LWoUgXbu3z6mVKEKpclGNepZr7lPQuBK9NuvJ2KXyZIpjuOkh3HaSHDiqA74FXm-nyn3Tavuvd_7Jf3iGQCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113494929</pqid></control><display><type>article</type><title>Bridging OER Electrocatalysis and Tumor Therapy: Utilizing Piezoelectric‐Hole‐Induced OER Electrocatalysis for Direct Oxygen Generation to Address Hypoxia</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Shuyao ; Yang, Meiqi ; Wang, Yan ; Tian, Boshi ; Wu, Linzhi ; Yang, Dan ; Gai, Shili ; Yang, Piaoping</creator><creatorcontrib>Li, Shuyao ; Yang, Meiqi ; Wang, Yan ; Tian, Boshi ; Wu, Linzhi ; Yang, Dan ; Gai, Shili ; Yang, Piaoping</creatorcontrib><description>In addressing the challenge of hypoxia within the tumor microenvironment (TME), a significant obstacle to effective cancer therapy, this research introduces a pioneering nanozyme engineered to utilize water and oxygen as reactants. Utilizing ultrasonic piezoelectricity, this nanozyme converts these substrates into oxygen (O2) and reactive oxygen species, thereby amplifying oxidative stress without relying on endogenous H2O2. This approach involves the strategic engineering of porous ZnSnOv:Mn nanosheets (named MZSO NSs), which are distinguished by oxygen‐rich vacancies and enhanced piezoelectric properties. This breakthrough represents the initial attempt to merge catalytic activities akin to catalase (CAT) with the electrocatalytic oxygen evolution reaction (OER), confirmed through both enzymatic reactions and electrochemical voltammetric analysis. The predominant mechanism of ultrasound‐augmented oxygen generation in MZSO is identified as piezoelectric hole‐induced OER. Supporting theoretical analyses clarify the synergistic impact of oxygen vacancies and Mn doping on the dynamics of carriers and the OER process, leading to a notable increase in catalytic efficiency. These findings highlight the potential of piezoelectric‐enhanced OER electrocatalysts to alleviate hypoxia in the TME, providing novel insights into the development of piezoelectric acoustic sensitizers for the treatment of cancer. Synthesized ZnSnOv:Mn NSs enhance carrier utilization and ROS production through doping engineering and piezoelectric effects. Crucially, the relationship between catalase (CAT) and oxygen evolution reaction (OER) reactions is clarified, using piezoelectric‐induced OER to generate O2 in acidic environments. This method minimizes dependence on endogenous H2O2 in tumor therapies and effectively addresses O2 depletion in TME and SDT.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202404169</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cancer ; Catalase ; Catalytic converters ; Chemical reactions ; doping strategy ; Electrocatalysis ; Electrocatalysts ; Hydrogen peroxide ; Hypoxia ; Impact analysis ; oxygen evolution reaction ; Oxygen evolution reactions ; oxygen vacancy ; Piezoelectricity ; piezo‐catalytic ; Substrates ; tumor therapy ; Tumors</subject><ispartof>Advanced functional materials, 2024-10, Vol.34 (41), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2729-97cdbc18ed46dcd646334951d6bc2b836f34ff8e93128af6543288df6ba78d9f3</cites><orcidid>0000-0002-9555-1803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202404169$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202404169$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Li, Shuyao</creatorcontrib><creatorcontrib>Yang, Meiqi</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Tian, Boshi</creatorcontrib><creatorcontrib>Wu, Linzhi</creatorcontrib><creatorcontrib>Yang, Dan</creatorcontrib><creatorcontrib>Gai, Shili</creatorcontrib><creatorcontrib>Yang, Piaoping</creatorcontrib><title>Bridging OER Electrocatalysis and Tumor Therapy: Utilizing Piezoelectric‐Hole‐Induced OER Electrocatalysis for Direct Oxygen Generation to Address Hypoxia</title><title>Advanced functional materials</title><description>In addressing the challenge of hypoxia within the tumor microenvironment (TME), a significant obstacle to effective cancer therapy, this research introduces a pioneering nanozyme engineered to utilize water and oxygen as reactants. Utilizing ultrasonic piezoelectricity, this nanozyme converts these substrates into oxygen (O2) and reactive oxygen species, thereby amplifying oxidative stress without relying on endogenous H2O2. This approach involves the strategic engineering of porous ZnSnOv:Mn nanosheets (named MZSO NSs), which are distinguished by oxygen‐rich vacancies and enhanced piezoelectric properties. This breakthrough represents the initial attempt to merge catalytic activities akin to catalase (CAT) with the electrocatalytic oxygen evolution reaction (OER), confirmed through both enzymatic reactions and electrochemical voltammetric analysis. The predominant mechanism of ultrasound‐augmented oxygen generation in MZSO is identified as piezoelectric hole‐induced OER. Supporting theoretical analyses clarify the synergistic impact of oxygen vacancies and Mn doping on the dynamics of carriers and the OER process, leading to a notable increase in catalytic efficiency. These findings highlight the potential of piezoelectric‐enhanced OER electrocatalysts to alleviate hypoxia in the TME, providing novel insights into the development of piezoelectric acoustic sensitizers for the treatment of cancer. Synthesized ZnSnOv:Mn NSs enhance carrier utilization and ROS production through doping engineering and piezoelectric effects. Crucially, the relationship between catalase (CAT) and oxygen evolution reaction (OER) reactions is clarified, using piezoelectric‐induced OER to generate O2 in acidic environments. This method minimizes dependence on endogenous H2O2 in tumor therapies and effectively addresses O2 depletion in TME and SDT.</description><subject>Cancer</subject><subject>Catalase</subject><subject>Catalytic converters</subject><subject>Chemical reactions</subject><subject>doping strategy</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Hydrogen peroxide</subject><subject>Hypoxia</subject><subject>Impact analysis</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>oxygen vacancy</subject><subject>Piezoelectricity</subject><subject>piezo‐catalytic</subject><subject>Substrates</subject><subject>tumor therapy</subject><subject>Tumors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctOAjEUhidGExHdum7iGuyNztQdIrcEgzGQuJuUXrBkmGI7RIaVj-AT-HA-iYMY3Ji4Oicn__edxR9Flwg2EYT4WiizbGKIKaSI8aOohhhiDQJxcnzY0dNpdBbCAkIUx4TWoo9bb9Xc5nMw7j6CbqZl4Z0UhcjKYAMQuQKT9dJ5MHnWXqzKGzAtbGa3O-LB6q3T34iVn2_vA5fpagxztZZa_S00lerO-uoKxptyrnPQ13llLqzLQeFAWymvQwCDcuU2VpxHJ0ZkQV_8zHo07XUnnUFjNO4PO-1RQ-IY8waPpZpJlGhFmZKKUUYI5S2k2EziWUKYIdSYRHOCcCIMa1GCk0QZNhNxorgh9ehq711597LWoUgXbu3z6mVKEKpclGNepZr7lPQuBK9NuvJ2KXyZIpjuOkh3HaSHDiqA74FXm-nyn3Tavuvd_7Jf3iGQCA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Li, Shuyao</creator><creator>Yang, Meiqi</creator><creator>Wang, Yan</creator><creator>Tian, Boshi</creator><creator>Wu, Linzhi</creator><creator>Yang, Dan</creator><creator>Gai, Shili</creator><creator>Yang, Piaoping</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9555-1803</orcidid></search><sort><creationdate>20241001</creationdate><title>Bridging OER Electrocatalysis and Tumor Therapy: Utilizing Piezoelectric‐Hole‐Induced OER Electrocatalysis for Direct Oxygen Generation to Address Hypoxia</title><author>Li, Shuyao ; Yang, Meiqi ; Wang, Yan ; Tian, Boshi ; Wu, Linzhi ; Yang, Dan ; Gai, Shili ; Yang, Piaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2729-97cdbc18ed46dcd646334951d6bc2b836f34ff8e93128af6543288df6ba78d9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cancer</topic><topic>Catalase</topic><topic>Catalytic converters</topic><topic>Chemical reactions</topic><topic>doping strategy</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Hydrogen peroxide</topic><topic>Hypoxia</topic><topic>Impact analysis</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>oxygen vacancy</topic><topic>Piezoelectricity</topic><topic>piezo‐catalytic</topic><topic>Substrates</topic><topic>tumor therapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shuyao</creatorcontrib><creatorcontrib>Yang, Meiqi</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Tian, Boshi</creatorcontrib><creatorcontrib>Wu, Linzhi</creatorcontrib><creatorcontrib>Yang, Dan</creatorcontrib><creatorcontrib>Gai, Shili</creatorcontrib><creatorcontrib>Yang, Piaoping</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shuyao</au><au>Yang, Meiqi</au><au>Wang, Yan</au><au>Tian, Boshi</au><au>Wu, Linzhi</au><au>Yang, Dan</au><au>Gai, Shili</au><au>Yang, Piaoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging OER Electrocatalysis and Tumor Therapy: Utilizing Piezoelectric‐Hole‐Induced OER Electrocatalysis for Direct Oxygen Generation to Address Hypoxia</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>34</volume><issue>41</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>In addressing the challenge of hypoxia within the tumor microenvironment (TME), a significant obstacle to effective cancer therapy, this research introduces a pioneering nanozyme engineered to utilize water and oxygen as reactants. Utilizing ultrasonic piezoelectricity, this nanozyme converts these substrates into oxygen (O2) and reactive oxygen species, thereby amplifying oxidative stress without relying on endogenous H2O2. This approach involves the strategic engineering of porous ZnSnOv:Mn nanosheets (named MZSO NSs), which are distinguished by oxygen‐rich vacancies and enhanced piezoelectric properties. This breakthrough represents the initial attempt to merge catalytic activities akin to catalase (CAT) with the electrocatalytic oxygen evolution reaction (OER), confirmed through both enzymatic reactions and electrochemical voltammetric analysis. The predominant mechanism of ultrasound‐augmented oxygen generation in MZSO is identified as piezoelectric hole‐induced OER. Supporting theoretical analyses clarify the synergistic impact of oxygen vacancies and Mn doping on the dynamics of carriers and the OER process, leading to a notable increase in catalytic efficiency. These findings highlight the potential of piezoelectric‐enhanced OER electrocatalysts to alleviate hypoxia in the TME, providing novel insights into the development of piezoelectric acoustic sensitizers for the treatment of cancer. Synthesized ZnSnOv:Mn NSs enhance carrier utilization and ROS production through doping engineering and piezoelectric effects. Crucially, the relationship between catalase (CAT) and oxygen evolution reaction (OER) reactions is clarified, using piezoelectric‐induced OER to generate O2 in acidic environments. This method minimizes dependence on endogenous H2O2 in tumor therapies and effectively addresses O2 depletion in TME and SDT.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202404169</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9555-1803</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-10, Vol.34 (41), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3113494929
source Wiley Online Library Journals Frontfile Complete
subjects Cancer
Catalase
Catalytic converters
Chemical reactions
doping strategy
Electrocatalysis
Electrocatalysts
Hydrogen peroxide
Hypoxia
Impact analysis
oxygen evolution reaction
Oxygen evolution reactions
oxygen vacancy
Piezoelectricity
piezo‐catalytic
Substrates
tumor therapy
Tumors
title Bridging OER Electrocatalysis and Tumor Therapy: Utilizing Piezoelectric‐Hole‐Induced OER Electrocatalysis for Direct Oxygen Generation to Address Hypoxia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20OER%20Electrocatalysis%20and%20Tumor%20Therapy:%20Utilizing%20Piezoelectric%E2%80%90Hole%E2%80%90Induced%20OER%20Electrocatalysis%20for%20Direct%20Oxygen%20Generation%20to%20Address%20Hypoxia&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Shuyao&rft.date=2024-10-01&rft.volume=34&rft.issue=41&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202404169&rft_dat=%3Cproquest_cross%3E3113494929%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113494929&rft_id=info:pmid/&rfr_iscdi=true