Zr(OH)4‐Catalyzed Semi‐Hydrogenation of Phenylacetylene with Terminal Zr−O−H as Active Site: Inactive for Free Styrene

In the field of industrial semi‐hydrogenation of trace alkynes amidst alkene feedstocks, the pivotal challenge lies in circumventing the hydrogenation of alkenes. Herein, we present Zr(OH)4 as an innovative catalyst for the semi‐hydrogenation of phenylacetylene, demonstrating remarkable selectivity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-10, Vol.136 (42), p.n/a
Hauptverfasser: Wu, Wenxiang, Li, Na, Che, Chunxia, Zhao, Jinping, Qin, Jiaheng, Feng, Zihan, Song, Jie, Zhang, Zinan, Zhang, Riguang, Long, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 42
container_start_page
container_title Angewandte Chemie
container_volume 136
creator Wu, Wenxiang
Li, Na
Che, Chunxia
Zhao, Jinping
Qin, Jiaheng
Feng, Zihan
Song, Jie
Zhang, Zinan
Zhang, Riguang
Long, Yu
description In the field of industrial semi‐hydrogenation of trace alkynes amidst alkene feedstocks, the pivotal challenge lies in circumventing the hydrogenation of alkenes. Herein, we present Zr(OH)4 as an innovative catalyst for the semi‐hydrogenation of phenylacetylene, demonstrating remarkable selectivity towards styrene (>96 %), while exhibiting inactivity towards free styrene. Notably, Zr(OH)4 achieves a 95 % conversion of quasi‐industry 1 mol % phenylacetylene within styrene, with a mere 0.44 % styrene loss. Experimental and theoretical results confirm both terminal Zr−O−H and bridge Zr−O−H can dissociate H2, while the terminal Zr−O−H plays a crucial role on activating phenylacetylene through the sequential hydrogenation process of C6H5C≡CH→C6H5C=CH2→C6H5CH=CH2. The high rate of phenylacetylene removal is attributed to its strong adsorption capacity, while Zr(OH)4 has a significantly weaker adsorption capacity for styrene. Zr(OH)4 was firstly applied to catalyze semi‐hydrogenation of phenylacetylene. It can achieve a 95 % removal rate of 1 % mol of phenylacetylene in styrene, and the terminal hydroxyl group is confirmed as the active site.
doi_str_mv 10.1002/ange.202410246
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3113482052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113482052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1176-580f51469cef0aca647725ccf7079589766afdf97a4a38768d57a2ae7650a0da3</originalsourceid><addsrcrecordid>eNqFUE1Lw0AUXETB-nH1vOBFD6m7m_1IvJXSNkKxgnrxEh7JW42kie6mlngQjx7Fn9hfYkpFjx6GxxtmhmEIOeKszxkTZ1DdY18wIXkHvUV6XAkehEaZbdJjTMogEjLeJXvePzLGtDBxj7zduZNZcipX759DaKBsXzGn1zgvOiJpc1ffYwVNUVe0tvTqAau2hAybtsQK6bJoHugNunlRQUnv3Orja9YhoeDpIGuKF6TXRYPn9KKCzWtrR8cOO75pXRdxQHYslB4Pf-4-uR2PboZJMJ1NLoaDaZBxbnSgImYVlzrO0DLIQEtjhMoya5iJVRQbrcHmNjYgIYyMjnJlQAAarRiwHMJ9crzJfXL18wJ9kz7WC9e19mnIeSgjwZToVP2NKnO19w5t-uSKObg25Sxdb5yuN05_N-4M8cawLEps_1Gng8vJ6M_7DTa-g_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113482052</pqid></control><display><type>article</type><title>Zr(OH)4‐Catalyzed Semi‐Hydrogenation of Phenylacetylene with Terminal Zr−O−H as Active Site: Inactive for Free Styrene</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Wu, Wenxiang ; Li, Na ; Che, Chunxia ; Zhao, Jinping ; Qin, Jiaheng ; Feng, Zihan ; Song, Jie ; Zhang, Zinan ; Zhang, Riguang ; Long, Yu</creator><creatorcontrib>Wu, Wenxiang ; Li, Na ; Che, Chunxia ; Zhao, Jinping ; Qin, Jiaheng ; Feng, Zihan ; Song, Jie ; Zhang, Zinan ; Zhang, Riguang ; Long, Yu</creatorcontrib><description>In the field of industrial semi‐hydrogenation of trace alkynes amidst alkene feedstocks, the pivotal challenge lies in circumventing the hydrogenation of alkenes. Herein, we present Zr(OH)4 as an innovative catalyst for the semi‐hydrogenation of phenylacetylene, demonstrating remarkable selectivity towards styrene (&gt;96 %), while exhibiting inactivity towards free styrene. Notably, Zr(OH)4 achieves a 95 % conversion of quasi‐industry 1 mol % phenylacetylene within styrene, with a mere 0.44 % styrene loss. Experimental and theoretical results confirm both terminal Zr−O−H and bridge Zr−O−H can dissociate H2, while the terminal Zr−O−H plays a crucial role on activating phenylacetylene through the sequential hydrogenation process of C6H5C≡CH→C6H5C=CH2→C6H5CH=CH2. The high rate of phenylacetylene removal is attributed to its strong adsorption capacity, while Zr(OH)4 has a significantly weaker adsorption capacity for styrene. Zr(OH)4 was firstly applied to catalyze semi‐hydrogenation of phenylacetylene. It can achieve a 95 % removal rate of 1 % mol of phenylacetylene in styrene, and the terminal hydroxyl group is confirmed as the active site.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202410246</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Alkenes ; Alkynes ; Catalysts ; Heterogeneous catalysis ; Hydrogenation ; Phenylacetylene ; Styrene ; Styrenes ; Zirconium</subject><ispartof>Angewandte Chemie, 2024-10, Vol.136 (42), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1176-580f51469cef0aca647725ccf7079589766afdf97a4a38768d57a2ae7650a0da3</cites><orcidid>0000-0001-5912-0128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202410246$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202410246$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wu, Wenxiang</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Che, Chunxia</creatorcontrib><creatorcontrib>Zhao, Jinping</creatorcontrib><creatorcontrib>Qin, Jiaheng</creatorcontrib><creatorcontrib>Feng, Zihan</creatorcontrib><creatorcontrib>Song, Jie</creatorcontrib><creatorcontrib>Zhang, Zinan</creatorcontrib><creatorcontrib>Zhang, Riguang</creatorcontrib><creatorcontrib>Long, Yu</creatorcontrib><title>Zr(OH)4‐Catalyzed Semi‐Hydrogenation of Phenylacetylene with Terminal Zr−O−H as Active Site: Inactive for Free Styrene</title><title>Angewandte Chemie</title><description>In the field of industrial semi‐hydrogenation of trace alkynes amidst alkene feedstocks, the pivotal challenge lies in circumventing the hydrogenation of alkenes. Herein, we present Zr(OH)4 as an innovative catalyst for the semi‐hydrogenation of phenylacetylene, demonstrating remarkable selectivity towards styrene (&gt;96 %), while exhibiting inactivity towards free styrene. Notably, Zr(OH)4 achieves a 95 % conversion of quasi‐industry 1 mol % phenylacetylene within styrene, with a mere 0.44 % styrene loss. Experimental and theoretical results confirm both terminal Zr−O−H and bridge Zr−O−H can dissociate H2, while the terminal Zr−O−H plays a crucial role on activating phenylacetylene through the sequential hydrogenation process of C6H5C≡CH→C6H5C=CH2→C6H5CH=CH2. The high rate of phenylacetylene removal is attributed to its strong adsorption capacity, while Zr(OH)4 has a significantly weaker adsorption capacity for styrene. Zr(OH)4 was firstly applied to catalyze semi‐hydrogenation of phenylacetylene. It can achieve a 95 % removal rate of 1 % mol of phenylacetylene in styrene, and the terminal hydroxyl group is confirmed as the active site.</description><subject>Adsorption</subject><subject>Alkenes</subject><subject>Alkynes</subject><subject>Catalysts</subject><subject>Heterogeneous catalysis</subject><subject>Hydrogenation</subject><subject>Phenylacetylene</subject><subject>Styrene</subject><subject>Styrenes</subject><subject>Zirconium</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUE1Lw0AUXETB-nH1vOBFD6m7m_1IvJXSNkKxgnrxEh7JW42kie6mlngQjx7Fn9hfYkpFjx6GxxtmhmEIOeKszxkTZ1DdY18wIXkHvUV6XAkehEaZbdJjTMogEjLeJXvePzLGtDBxj7zduZNZcipX759DaKBsXzGn1zgvOiJpc1ffYwVNUVe0tvTqAau2hAybtsQK6bJoHugNunlRQUnv3Orja9YhoeDpIGuKF6TXRYPn9KKCzWtrR8cOO75pXRdxQHYslB4Pf-4-uR2PboZJMJ1NLoaDaZBxbnSgImYVlzrO0DLIQEtjhMoya5iJVRQbrcHmNjYgIYyMjnJlQAAarRiwHMJ9crzJfXL18wJ9kz7WC9e19mnIeSgjwZToVP2NKnO19w5t-uSKObg25Sxdb5yuN05_N-4M8cawLEps_1Gng8vJ6M_7DTa-g_s</recordid><startdate>20241014</startdate><enddate>20241014</enddate><creator>Wu, Wenxiang</creator><creator>Li, Na</creator><creator>Che, Chunxia</creator><creator>Zhao, Jinping</creator><creator>Qin, Jiaheng</creator><creator>Feng, Zihan</creator><creator>Song, Jie</creator><creator>Zhang, Zinan</creator><creator>Zhang, Riguang</creator><creator>Long, Yu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5912-0128</orcidid></search><sort><creationdate>20241014</creationdate><title>Zr(OH)4‐Catalyzed Semi‐Hydrogenation of Phenylacetylene with Terminal Zr−O−H as Active Site: Inactive for Free Styrene</title><author>Wu, Wenxiang ; Li, Na ; Che, Chunxia ; Zhao, Jinping ; Qin, Jiaheng ; Feng, Zihan ; Song, Jie ; Zhang, Zinan ; Zhang, Riguang ; Long, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1176-580f51469cef0aca647725ccf7079589766afdf97a4a38768d57a2ae7650a0da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Alkenes</topic><topic>Alkynes</topic><topic>Catalysts</topic><topic>Heterogeneous catalysis</topic><topic>Hydrogenation</topic><topic>Phenylacetylene</topic><topic>Styrene</topic><topic>Styrenes</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Wenxiang</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Che, Chunxia</creatorcontrib><creatorcontrib>Zhao, Jinping</creatorcontrib><creatorcontrib>Qin, Jiaheng</creatorcontrib><creatorcontrib>Feng, Zihan</creatorcontrib><creatorcontrib>Song, Jie</creatorcontrib><creatorcontrib>Zhang, Zinan</creatorcontrib><creatorcontrib>Zhang, Riguang</creatorcontrib><creatorcontrib>Long, Yu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Wenxiang</au><au>Li, Na</au><au>Che, Chunxia</au><au>Zhao, Jinping</au><au>Qin, Jiaheng</au><au>Feng, Zihan</au><au>Song, Jie</au><au>Zhang, Zinan</au><au>Zhang, Riguang</au><au>Long, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zr(OH)4‐Catalyzed Semi‐Hydrogenation of Phenylacetylene with Terminal Zr−O−H as Active Site: Inactive for Free Styrene</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-10-14</date><risdate>2024</risdate><volume>136</volume><issue>42</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>In the field of industrial semi‐hydrogenation of trace alkynes amidst alkene feedstocks, the pivotal challenge lies in circumventing the hydrogenation of alkenes. Herein, we present Zr(OH)4 as an innovative catalyst for the semi‐hydrogenation of phenylacetylene, demonstrating remarkable selectivity towards styrene (&gt;96 %), while exhibiting inactivity towards free styrene. Notably, Zr(OH)4 achieves a 95 % conversion of quasi‐industry 1 mol % phenylacetylene within styrene, with a mere 0.44 % styrene loss. Experimental and theoretical results confirm both terminal Zr−O−H and bridge Zr−O−H can dissociate H2, while the terminal Zr−O−H plays a crucial role on activating phenylacetylene through the sequential hydrogenation process of C6H5C≡CH→C6H5C=CH2→C6H5CH=CH2. The high rate of phenylacetylene removal is attributed to its strong adsorption capacity, while Zr(OH)4 has a significantly weaker adsorption capacity for styrene. Zr(OH)4 was firstly applied to catalyze semi‐hydrogenation of phenylacetylene. It can achieve a 95 % removal rate of 1 % mol of phenylacetylene in styrene, and the terminal hydroxyl group is confirmed as the active site.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202410246</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5912-0128</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-10, Vol.136 (42), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_3113482052
source Wiley Online Library - AutoHoldings Journals
subjects Adsorption
Alkenes
Alkynes
Catalysts
Heterogeneous catalysis
Hydrogenation
Phenylacetylene
Styrene
Styrenes
Zirconium
title Zr(OH)4‐Catalyzed Semi‐Hydrogenation of Phenylacetylene with Terminal Zr−O−H as Active Site: Inactive for Free Styrene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zr(OH)4%E2%80%90Catalyzed%20Semi%E2%80%90Hydrogenation%20of%20Phenylacetylene%20with%20Terminal%20Zr%E2%88%92O%E2%88%92H%20as%20Active%20Site:%20Inactive%20for%20Free%20Styrene&rft.jtitle=Angewandte%20Chemie&rft.au=Wu,%20Wenxiang&rft.date=2024-10-14&rft.volume=136&rft.issue=42&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202410246&rft_dat=%3Cproquest_cross%3E3113482052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113482052&rft_id=info:pmid/&rfr_iscdi=true