Zr(OH)4‐Catalyzed Semi‐Hydrogenation of Phenylacetylene with Terminal Zr−O−H as Active Site: Inactive for Free Styrene
In the field of industrial semi‐hydrogenation of trace alkynes amidst alkene feedstocks, the pivotal challenge lies in circumventing the hydrogenation of alkenes. Herein, we present Zr(OH)4 as an innovative catalyst for the semi‐hydrogenation of phenylacetylene, demonstrating remarkable selectivity...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2024-10, Vol.136 (42), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 42 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 136 |
creator | Wu, Wenxiang Li, Na Che, Chunxia Zhao, Jinping Qin, Jiaheng Feng, Zihan Song, Jie Zhang, Zinan Zhang, Riguang Long, Yu |
description | In the field of industrial semi‐hydrogenation of trace alkynes amidst alkene feedstocks, the pivotal challenge lies in circumventing the hydrogenation of alkenes. Herein, we present Zr(OH)4 as an innovative catalyst for the semi‐hydrogenation of phenylacetylene, demonstrating remarkable selectivity towards styrene (>96 %), while exhibiting inactivity towards free styrene. Notably, Zr(OH)4 achieves a 95 % conversion of quasi‐industry 1 mol % phenylacetylene within styrene, with a mere 0.44 % styrene loss. Experimental and theoretical results confirm both terminal Zr−O−H and bridge Zr−O−H can dissociate H2, while the terminal Zr−O−H plays a crucial role on activating phenylacetylene through the sequential hydrogenation process of C6H5C≡CH→C6H5C=CH2→C6H5CH=CH2. The high rate of phenylacetylene removal is attributed to its strong adsorption capacity, while Zr(OH)4 has a significantly weaker adsorption capacity for styrene.
Zr(OH)4 was firstly applied to catalyze semi‐hydrogenation of phenylacetylene. It can achieve a 95 % removal rate of 1 % mol of phenylacetylene in styrene, and the terminal hydroxyl group is confirmed as the active site. |
doi_str_mv | 10.1002/ange.202410246 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3113482052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113482052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1176-580f51469cef0aca647725ccf7079589766afdf97a4a38768d57a2ae7650a0da3</originalsourceid><addsrcrecordid>eNqFUE1Lw0AUXETB-nH1vOBFD6m7m_1IvJXSNkKxgnrxEh7JW42kie6mlngQjx7Fn9hfYkpFjx6GxxtmhmEIOeKszxkTZ1DdY18wIXkHvUV6XAkehEaZbdJjTMogEjLeJXvePzLGtDBxj7zduZNZcipX759DaKBsXzGn1zgvOiJpc1ffYwVNUVe0tvTqAau2hAybtsQK6bJoHugNunlRQUnv3Orja9YhoeDpIGuKF6TXRYPn9KKCzWtrR8cOO75pXRdxQHYslB4Pf-4-uR2PboZJMJ1NLoaDaZBxbnSgImYVlzrO0DLIQEtjhMoya5iJVRQbrcHmNjYgIYyMjnJlQAAarRiwHMJ9crzJfXL18wJ9kz7WC9e19mnIeSgjwZToVP2NKnO19w5t-uSKObg25Sxdb5yuN05_N-4M8cawLEps_1Gng8vJ6M_7DTa-g_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113482052</pqid></control><display><type>article</type><title>Zr(OH)4‐Catalyzed Semi‐Hydrogenation of Phenylacetylene with Terminal Zr−O−H as Active Site: Inactive for Free Styrene</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Wu, Wenxiang ; Li, Na ; Che, Chunxia ; Zhao, Jinping ; Qin, Jiaheng ; Feng, Zihan ; Song, Jie ; Zhang, Zinan ; Zhang, Riguang ; Long, Yu</creator><creatorcontrib>Wu, Wenxiang ; Li, Na ; Che, Chunxia ; Zhao, Jinping ; Qin, Jiaheng ; Feng, Zihan ; Song, Jie ; Zhang, Zinan ; Zhang, Riguang ; Long, Yu</creatorcontrib><description>In the field of industrial semi‐hydrogenation of trace alkynes amidst alkene feedstocks, the pivotal challenge lies in circumventing the hydrogenation of alkenes. Herein, we present Zr(OH)4 as an innovative catalyst for the semi‐hydrogenation of phenylacetylene, demonstrating remarkable selectivity towards styrene (>96 %), while exhibiting inactivity towards free styrene. Notably, Zr(OH)4 achieves a 95 % conversion of quasi‐industry 1 mol % phenylacetylene within styrene, with a mere 0.44 % styrene loss. Experimental and theoretical results confirm both terminal Zr−O−H and bridge Zr−O−H can dissociate H2, while the terminal Zr−O−H plays a crucial role on activating phenylacetylene through the sequential hydrogenation process of C6H5C≡CH→C6H5C=CH2→C6H5CH=CH2. The high rate of phenylacetylene removal is attributed to its strong adsorption capacity, while Zr(OH)4 has a significantly weaker adsorption capacity for styrene.
Zr(OH)4 was firstly applied to catalyze semi‐hydrogenation of phenylacetylene. It can achieve a 95 % removal rate of 1 % mol of phenylacetylene in styrene, and the terminal hydroxyl group is confirmed as the active site.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202410246</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Alkenes ; Alkynes ; Catalysts ; Heterogeneous catalysis ; Hydrogenation ; Phenylacetylene ; Styrene ; Styrenes ; Zirconium</subject><ispartof>Angewandte Chemie, 2024-10, Vol.136 (42), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1176-580f51469cef0aca647725ccf7079589766afdf97a4a38768d57a2ae7650a0da3</cites><orcidid>0000-0001-5912-0128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202410246$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202410246$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wu, Wenxiang</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Che, Chunxia</creatorcontrib><creatorcontrib>Zhao, Jinping</creatorcontrib><creatorcontrib>Qin, Jiaheng</creatorcontrib><creatorcontrib>Feng, Zihan</creatorcontrib><creatorcontrib>Song, Jie</creatorcontrib><creatorcontrib>Zhang, Zinan</creatorcontrib><creatorcontrib>Zhang, Riguang</creatorcontrib><creatorcontrib>Long, Yu</creatorcontrib><title>Zr(OH)4‐Catalyzed Semi‐Hydrogenation of Phenylacetylene with Terminal Zr−O−H as Active Site: Inactive for Free Styrene</title><title>Angewandte Chemie</title><description>In the field of industrial semi‐hydrogenation of trace alkynes amidst alkene feedstocks, the pivotal challenge lies in circumventing the hydrogenation of alkenes. Herein, we present Zr(OH)4 as an innovative catalyst for the semi‐hydrogenation of phenylacetylene, demonstrating remarkable selectivity towards styrene (>96 %), while exhibiting inactivity towards free styrene. Notably, Zr(OH)4 achieves a 95 % conversion of quasi‐industry 1 mol % phenylacetylene within styrene, with a mere 0.44 % styrene loss. Experimental and theoretical results confirm both terminal Zr−O−H and bridge Zr−O−H can dissociate H2, while the terminal Zr−O−H plays a crucial role on activating phenylacetylene through the sequential hydrogenation process of C6H5C≡CH→C6H5C=CH2→C6H5CH=CH2. The high rate of phenylacetylene removal is attributed to its strong adsorption capacity, while Zr(OH)4 has a significantly weaker adsorption capacity for styrene.
Zr(OH)4 was firstly applied to catalyze semi‐hydrogenation of phenylacetylene. It can achieve a 95 % removal rate of 1 % mol of phenylacetylene in styrene, and the terminal hydroxyl group is confirmed as the active site.</description><subject>Adsorption</subject><subject>Alkenes</subject><subject>Alkynes</subject><subject>Catalysts</subject><subject>Heterogeneous catalysis</subject><subject>Hydrogenation</subject><subject>Phenylacetylene</subject><subject>Styrene</subject><subject>Styrenes</subject><subject>Zirconium</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUE1Lw0AUXETB-nH1vOBFD6m7m_1IvJXSNkKxgnrxEh7JW42kie6mlngQjx7Fn9hfYkpFjx6GxxtmhmEIOeKszxkTZ1DdY18wIXkHvUV6XAkehEaZbdJjTMogEjLeJXvePzLGtDBxj7zduZNZcipX759DaKBsXzGn1zgvOiJpc1ffYwVNUVe0tvTqAau2hAybtsQK6bJoHugNunlRQUnv3Orja9YhoeDpIGuKF6TXRYPn9KKCzWtrR8cOO75pXRdxQHYslB4Pf-4-uR2PboZJMJ1NLoaDaZBxbnSgImYVlzrO0DLIQEtjhMoya5iJVRQbrcHmNjYgIYyMjnJlQAAarRiwHMJ9crzJfXL18wJ9kz7WC9e19mnIeSgjwZToVP2NKnO19w5t-uSKObg25Sxdb5yuN05_N-4M8cawLEps_1Gng8vJ6M_7DTa-g_s</recordid><startdate>20241014</startdate><enddate>20241014</enddate><creator>Wu, Wenxiang</creator><creator>Li, Na</creator><creator>Che, Chunxia</creator><creator>Zhao, Jinping</creator><creator>Qin, Jiaheng</creator><creator>Feng, Zihan</creator><creator>Song, Jie</creator><creator>Zhang, Zinan</creator><creator>Zhang, Riguang</creator><creator>Long, Yu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5912-0128</orcidid></search><sort><creationdate>20241014</creationdate><title>Zr(OH)4‐Catalyzed Semi‐Hydrogenation of Phenylacetylene with Terminal Zr−O−H as Active Site: Inactive for Free Styrene</title><author>Wu, Wenxiang ; Li, Na ; Che, Chunxia ; Zhao, Jinping ; Qin, Jiaheng ; Feng, Zihan ; Song, Jie ; Zhang, Zinan ; Zhang, Riguang ; Long, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1176-580f51469cef0aca647725ccf7079589766afdf97a4a38768d57a2ae7650a0da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Alkenes</topic><topic>Alkynes</topic><topic>Catalysts</topic><topic>Heterogeneous catalysis</topic><topic>Hydrogenation</topic><topic>Phenylacetylene</topic><topic>Styrene</topic><topic>Styrenes</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Wenxiang</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Che, Chunxia</creatorcontrib><creatorcontrib>Zhao, Jinping</creatorcontrib><creatorcontrib>Qin, Jiaheng</creatorcontrib><creatorcontrib>Feng, Zihan</creatorcontrib><creatorcontrib>Song, Jie</creatorcontrib><creatorcontrib>Zhang, Zinan</creatorcontrib><creatorcontrib>Zhang, Riguang</creatorcontrib><creatorcontrib>Long, Yu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Wenxiang</au><au>Li, Na</au><au>Che, Chunxia</au><au>Zhao, Jinping</au><au>Qin, Jiaheng</au><au>Feng, Zihan</au><au>Song, Jie</au><au>Zhang, Zinan</au><au>Zhang, Riguang</au><au>Long, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zr(OH)4‐Catalyzed Semi‐Hydrogenation of Phenylacetylene with Terminal Zr−O−H as Active Site: Inactive for Free Styrene</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-10-14</date><risdate>2024</risdate><volume>136</volume><issue>42</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>In the field of industrial semi‐hydrogenation of trace alkynes amidst alkene feedstocks, the pivotal challenge lies in circumventing the hydrogenation of alkenes. Herein, we present Zr(OH)4 as an innovative catalyst for the semi‐hydrogenation of phenylacetylene, demonstrating remarkable selectivity towards styrene (>96 %), while exhibiting inactivity towards free styrene. Notably, Zr(OH)4 achieves a 95 % conversion of quasi‐industry 1 mol % phenylacetylene within styrene, with a mere 0.44 % styrene loss. Experimental and theoretical results confirm both terminal Zr−O−H and bridge Zr−O−H can dissociate H2, while the terminal Zr−O−H plays a crucial role on activating phenylacetylene through the sequential hydrogenation process of C6H5C≡CH→C6H5C=CH2→C6H5CH=CH2. The high rate of phenylacetylene removal is attributed to its strong adsorption capacity, while Zr(OH)4 has a significantly weaker adsorption capacity for styrene.
Zr(OH)4 was firstly applied to catalyze semi‐hydrogenation of phenylacetylene. It can achieve a 95 % removal rate of 1 % mol of phenylacetylene in styrene, and the terminal hydroxyl group is confirmed as the active site.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202410246</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5912-0128</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2024-10, Vol.136 (42), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_3113482052 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Adsorption Alkenes Alkynes Catalysts Heterogeneous catalysis Hydrogenation Phenylacetylene Styrene Styrenes Zirconium |
title | Zr(OH)4‐Catalyzed Semi‐Hydrogenation of Phenylacetylene with Terminal Zr−O−H as Active Site: Inactive for Free Styrene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zr(OH)4%E2%80%90Catalyzed%20Semi%E2%80%90Hydrogenation%20of%20Phenylacetylene%20with%20Terminal%20Zr%E2%88%92O%E2%88%92H%20as%20Active%20Site:%20Inactive%20for%20Free%20Styrene&rft.jtitle=Angewandte%20Chemie&rft.au=Wu,%20Wenxiang&rft.date=2024-10-14&rft.volume=136&rft.issue=42&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202410246&rft_dat=%3Cproquest_cross%3E3113482052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113482052&rft_id=info:pmid/&rfr_iscdi=true |