Differential Operators Defining Solutions to Iterated Hyperbolic-Type Equations

Hyperbolic-type differential equations and their iterations are widely used to solve problems related to vibration phenomena and other problems of mechanics and mathematical physics. The methods of solving such equations are the creation of differential and integral operators. In the article, differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems analysis 2024-09, Vol.60 (5), p.753-758
Hauptverfasser: Lyashko, S. I., Sydorov, M. V.-S., Lyashko, N. I., Alexandrovich, I. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 758
container_issue 5
container_start_page 753
container_title Cybernetics and systems analysis
container_volume 60
creator Lyashko, S. I.
Sydorov, M. V.-S.
Lyashko, N. I.
Alexandrovich, I. M.
description Hyperbolic-type differential equations and their iterations are widely used to solve problems related to vibration phenomena and other problems of mechanics and mathematical physics. The methods of solving such equations are the creation of differential and integral operators. In the article, differential operators are constructed that translate arbitrary functions into regular solutions of a hyperbolic equation of the second and higher orders. The Riquier problem for the hyperbolic equation of the fourth order is solved.
doi_str_mv 10.1007/s10559-024-00712-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3113371146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113371146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-c311da629b0c5a40134d0be3da11b5688d09e1116a95c3d2e4a8bfca92f7e88e3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5gsMRvuYidxRtSWtlKlDpTZchK7ShXi1k6G_nvcBomN6e5033une4Q8I7wiQP4WENK0YJAIFkdMmLghE0xzziTn-W3sIQMGvMjuyUMIBwDgkMsJ2c4ba403Xd_olm6Pxuve-UDnxjZd0-3pp2uHvnFdoL2j6_6yNzVdnSNZurap2C62dHEa9JV6JHdWt8E8_dYp-fpY7GYrttku17P3DasSgJ5VHLHWWVKUUKVaAHJRQ2l4rRHLNJOyhsIgYqaLtOJ1YoSWpa10kdjcSGn4lLyMvkfvToMJvTq4wXfxpIrW8WdEkUUqGanKuxC8serom2_tzwpBXYJTY3AqBqeuwSkRRXwUhQh3e-P_rP9R_QAQ3XEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113371146</pqid></control><display><type>article</type><title>Differential Operators Defining Solutions to Iterated Hyperbolic-Type Equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Lyashko, S. I. ; Sydorov, M. V.-S. ; Lyashko, N. I. ; Alexandrovich, I. M.</creator><creatorcontrib>Lyashko, S. I. ; Sydorov, M. V.-S. ; Lyashko, N. I. ; Alexandrovich, I. M.</creatorcontrib><description>Hyperbolic-type differential equations and their iterations are widely used to solve problems related to vibration phenomena and other problems of mechanics and mathematical physics. The methods of solving such equations are the creation of differential and integral operators. In the article, differential operators are constructed that translate arbitrary functions into regular solutions of a hyperbolic equation of the second and higher orders. The Riquier problem for the hyperbolic equation of the fourth order is solved.</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><identifier>DOI: 10.1007/s10559-024-00712-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Control ; Hyperbolic differential equations ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Processor Architectures ; Software Engineering/Programming and Operating Systems ; Systems Theory</subject><ispartof>Cybernetics and systems analysis, 2024-09, Vol.60 (5), p.753-758</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-c311da629b0c5a40134d0be3da11b5688d09e1116a95c3d2e4a8bfca92f7e88e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10559-024-00712-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10559-024-00712-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Lyashko, S. I.</creatorcontrib><creatorcontrib>Sydorov, M. V.-S.</creatorcontrib><creatorcontrib>Lyashko, N. I.</creatorcontrib><creatorcontrib>Alexandrovich, I. M.</creatorcontrib><title>Differential Operators Defining Solutions to Iterated Hyperbolic-Type Equations</title><title>Cybernetics and systems analysis</title><addtitle>Cybern Syst Anal</addtitle><description>Hyperbolic-type differential equations and their iterations are widely used to solve problems related to vibration phenomena and other problems of mechanics and mathematical physics. The methods of solving such equations are the creation of differential and integral operators. In the article, differential operators are constructed that translate arbitrary functions into regular solutions of a hyperbolic equation of the second and higher orders. The Riquier problem for the hyperbolic equation of the fourth order is solved.</description><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Hyperbolic differential equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Processor Architectures</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Systems Theory</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5gsMRvuYidxRtSWtlKlDpTZchK7ShXi1k6G_nvcBomN6e5033une4Q8I7wiQP4WENK0YJAIFkdMmLghE0xzziTn-W3sIQMGvMjuyUMIBwDgkMsJ2c4ba403Xd_olm6Pxuve-UDnxjZd0-3pp2uHvnFdoL2j6_6yNzVdnSNZurap2C62dHEa9JV6JHdWt8E8_dYp-fpY7GYrttku17P3DasSgJ5VHLHWWVKUUKVaAHJRQ2l4rRHLNJOyhsIgYqaLtOJ1YoSWpa10kdjcSGn4lLyMvkfvToMJvTq4wXfxpIrW8WdEkUUqGanKuxC8serom2_tzwpBXYJTY3AqBqeuwSkRRXwUhQh3e-P_rP9R_QAQ3XEc</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Lyashko, S. I.</creator><creator>Sydorov, M. V.-S.</creator><creator>Lyashko, N. I.</creator><creator>Alexandrovich, I. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240901</creationdate><title>Differential Operators Defining Solutions to Iterated Hyperbolic-Type Equations</title><author>Lyashko, S. I. ; Sydorov, M. V.-S. ; Lyashko, N. I. ; Alexandrovich, I. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-c311da629b0c5a40134d0be3da11b5688d09e1116a95c3d2e4a8bfca92f7e88e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Hyperbolic differential equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Processor Architectures</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyashko, S. I.</creatorcontrib><creatorcontrib>Sydorov, M. V.-S.</creatorcontrib><creatorcontrib>Lyashko, N. I.</creatorcontrib><creatorcontrib>Alexandrovich, I. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyashko, S. I.</au><au>Sydorov, M. V.-S.</au><au>Lyashko, N. I.</au><au>Alexandrovich, I. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential Operators Defining Solutions to Iterated Hyperbolic-Type Equations</atitle><jtitle>Cybernetics and systems analysis</jtitle><stitle>Cybern Syst Anal</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>60</volume><issue>5</issue><spage>753</spage><epage>758</epage><pages>753-758</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>Hyperbolic-type differential equations and their iterations are widely used to solve problems related to vibration phenomena and other problems of mechanics and mathematical physics. The methods of solving such equations are the creation of differential and integral operators. In the article, differential operators are constructed that translate arbitrary functions into regular solutions of a hyperbolic equation of the second and higher orders. The Riquier problem for the hyperbolic equation of the fourth order is solved.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10559-024-00712-4</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1060-0396
ispartof Cybernetics and systems analysis, 2024-09, Vol.60 (5), p.753-758
issn 1060-0396
1573-8337
language eng
recordid cdi_proquest_journals_3113371146
source Springer Nature - Complete Springer Journals
subjects Artificial Intelligence
Control
Hyperbolic differential equations
Mathematics
Mathematics and Statistics
Operators (mathematics)
Processor Architectures
Software Engineering/Programming and Operating Systems
Systems Theory
title Differential Operators Defining Solutions to Iterated Hyperbolic-Type Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20Operators%20Defining%20Solutions%20to%20Iterated%20Hyperbolic-Type%20Equations&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Lyashko,%20S.%20I.&rft.date=2024-09-01&rft.volume=60&rft.issue=5&rft.spage=753&rft.epage=758&rft.pages=753-758&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/10.1007/s10559-024-00712-4&rft_dat=%3Cproquest_cross%3E3113371146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113371146&rft_id=info:pmid/&rfr_iscdi=true