Differential Operators Defining Solutions to Iterated Hyperbolic-Type Equations
Hyperbolic-type differential equations and their iterations are widely used to solve problems related to vibration phenomena and other problems of mechanics and mathematical physics. The methods of solving such equations are the creation of differential and integral operators. In the article, differ...
Gespeichert in:
Veröffentlicht in: | Cybernetics and systems analysis 2024-09, Vol.60 (5), p.753-758 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 758 |
---|---|
container_issue | 5 |
container_start_page | 753 |
container_title | Cybernetics and systems analysis |
container_volume | 60 |
creator | Lyashko, S. I. Sydorov, M. V.-S. Lyashko, N. I. Alexandrovich, I. M. |
description | Hyperbolic-type differential equations and their iterations are widely used to solve problems related to vibration phenomena and other problems of mechanics and mathematical physics. The methods of solving such equations are the creation of differential and integral operators. In the article, differential operators are constructed that translate arbitrary functions into regular solutions of a hyperbolic equation of the second and higher orders. The Riquier problem for the hyperbolic equation of the fourth order is solved. |
doi_str_mv | 10.1007/s10559-024-00712-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3113371146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113371146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-c311da629b0c5a40134d0be3da11b5688d09e1116a95c3d2e4a8bfca92f7e88e3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5gsMRvuYidxRtSWtlKlDpTZchK7ShXi1k6G_nvcBomN6e5033une4Q8I7wiQP4WENK0YJAIFkdMmLghE0xzziTn-W3sIQMGvMjuyUMIBwDgkMsJ2c4ba403Xd_olm6Pxuve-UDnxjZd0-3pp2uHvnFdoL2j6_6yNzVdnSNZurap2C62dHEa9JV6JHdWt8E8_dYp-fpY7GYrttku17P3DasSgJ5VHLHWWVKUUKVaAHJRQ2l4rRHLNJOyhsIgYqaLtOJ1YoSWpa10kdjcSGn4lLyMvkfvToMJvTq4wXfxpIrW8WdEkUUqGanKuxC8serom2_tzwpBXYJTY3AqBqeuwSkRRXwUhQh3e-P_rP9R_QAQ3XEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113371146</pqid></control><display><type>article</type><title>Differential Operators Defining Solutions to Iterated Hyperbolic-Type Equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Lyashko, S. I. ; Sydorov, M. V.-S. ; Lyashko, N. I. ; Alexandrovich, I. M.</creator><creatorcontrib>Lyashko, S. I. ; Sydorov, M. V.-S. ; Lyashko, N. I. ; Alexandrovich, I. M.</creatorcontrib><description>Hyperbolic-type differential equations and their iterations are widely used to solve problems related to vibration phenomena and other problems of mechanics and mathematical physics. The methods of solving such equations are the creation of differential and integral operators. In the article, differential operators are constructed that translate arbitrary functions into regular solutions of a hyperbolic equation of the second and higher orders. The Riquier problem for the hyperbolic equation of the fourth order is solved.</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><identifier>DOI: 10.1007/s10559-024-00712-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Control ; Hyperbolic differential equations ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Processor Architectures ; Software Engineering/Programming and Operating Systems ; Systems Theory</subject><ispartof>Cybernetics and systems analysis, 2024-09, Vol.60 (5), p.753-758</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-c311da629b0c5a40134d0be3da11b5688d09e1116a95c3d2e4a8bfca92f7e88e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10559-024-00712-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10559-024-00712-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Lyashko, S. I.</creatorcontrib><creatorcontrib>Sydorov, M. V.-S.</creatorcontrib><creatorcontrib>Lyashko, N. I.</creatorcontrib><creatorcontrib>Alexandrovich, I. M.</creatorcontrib><title>Differential Operators Defining Solutions to Iterated Hyperbolic-Type Equations</title><title>Cybernetics and systems analysis</title><addtitle>Cybern Syst Anal</addtitle><description>Hyperbolic-type differential equations and their iterations are widely used to solve problems related to vibration phenomena and other problems of mechanics and mathematical physics. The methods of solving such equations are the creation of differential and integral operators. In the article, differential operators are constructed that translate arbitrary functions into regular solutions of a hyperbolic equation of the second and higher orders. The Riquier problem for the hyperbolic equation of the fourth order is solved.</description><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Hyperbolic differential equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Processor Architectures</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Systems Theory</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5gsMRvuYidxRtSWtlKlDpTZchK7ShXi1k6G_nvcBomN6e5033une4Q8I7wiQP4WENK0YJAIFkdMmLghE0xzziTn-W3sIQMGvMjuyUMIBwDgkMsJ2c4ba403Xd_olm6Pxuve-UDnxjZd0-3pp2uHvnFdoL2j6_6yNzVdnSNZurap2C62dHEa9JV6JHdWt8E8_dYp-fpY7GYrttku17P3DasSgJ5VHLHWWVKUUKVaAHJRQ2l4rRHLNJOyhsIgYqaLtOJ1YoSWpa10kdjcSGn4lLyMvkfvToMJvTq4wXfxpIrW8WdEkUUqGanKuxC8serom2_tzwpBXYJTY3AqBqeuwSkRRXwUhQh3e-P_rP9R_QAQ3XEc</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Lyashko, S. I.</creator><creator>Sydorov, M. V.-S.</creator><creator>Lyashko, N. I.</creator><creator>Alexandrovich, I. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240901</creationdate><title>Differential Operators Defining Solutions to Iterated Hyperbolic-Type Equations</title><author>Lyashko, S. I. ; Sydorov, M. V.-S. ; Lyashko, N. I. ; Alexandrovich, I. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-c311da629b0c5a40134d0be3da11b5688d09e1116a95c3d2e4a8bfca92f7e88e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Hyperbolic differential equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Processor Architectures</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyashko, S. I.</creatorcontrib><creatorcontrib>Sydorov, M. V.-S.</creatorcontrib><creatorcontrib>Lyashko, N. I.</creatorcontrib><creatorcontrib>Alexandrovich, I. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyashko, S. I.</au><au>Sydorov, M. V.-S.</au><au>Lyashko, N. I.</au><au>Alexandrovich, I. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential Operators Defining Solutions to Iterated Hyperbolic-Type Equations</atitle><jtitle>Cybernetics and systems analysis</jtitle><stitle>Cybern Syst Anal</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>60</volume><issue>5</issue><spage>753</spage><epage>758</epage><pages>753-758</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>Hyperbolic-type differential equations and their iterations are widely used to solve problems related to vibration phenomena and other problems of mechanics and mathematical physics. The methods of solving such equations are the creation of differential and integral operators. In the article, differential operators are constructed that translate arbitrary functions into regular solutions of a hyperbolic equation of the second and higher orders. The Riquier problem for the hyperbolic equation of the fourth order is solved.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10559-024-00712-4</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1060-0396 |
ispartof | Cybernetics and systems analysis, 2024-09, Vol.60 (5), p.753-758 |
issn | 1060-0396 1573-8337 |
language | eng |
recordid | cdi_proquest_journals_3113371146 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial Intelligence Control Hyperbolic differential equations Mathematics Mathematics and Statistics Operators (mathematics) Processor Architectures Software Engineering/Programming and Operating Systems Systems Theory |
title | Differential Operators Defining Solutions to Iterated Hyperbolic-Type Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20Operators%20Defining%20Solutions%20to%20Iterated%20Hyperbolic-Type%20Equations&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Lyashko,%20S.%20I.&rft.date=2024-09-01&rft.volume=60&rft.issue=5&rft.spage=753&rft.epage=758&rft.pages=753-758&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/10.1007/s10559-024-00712-4&rft_dat=%3Cproquest_cross%3E3113371146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113371146&rft_id=info:pmid/&rfr_iscdi=true |