Advanced techniques for analyzing solitary waves in circular rods: a sensitivity visualization study
This study evaluates the effectiveness of the New Sub-Equation Method and the Modified Khater Method in solving the longitudinal wave equation (LWE), a critical nonlinear partial differential equation in mathematical physics. In mathematical physics, the longitudinal wave equation arises with disper...
Gespeichert in:
Veröffentlicht in: | Optical and quantum electronics 2024-10, Vol.56 (10), Article 1673 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Optical and quantum electronics |
container_volume | 56 |
creator | Sagher, Azad Ali Asjad, Muhammad Imran Muhammad, Taseer |
description | This study evaluates the effectiveness of the New Sub-Equation Method and the Modified Khater Method in solving the longitudinal wave equation (LWE), a critical nonlinear partial differential equation in mathematical physics. In mathematical physics, the longitudinal wave equation arises with dispersion caused by transverse Poisson’s effect in a circular rod. Employ wave transformation to reformulate the model into ordinary differential equation. The research successfully identifies a range of exact traveling wave solutions, including kink, lump, anti-kink, combined bright-dark, periodic, and U-shaped solitons. Detailed graphical visualizations, produced using Wolfram Mathematica and MATLAB, offer in-depth insights into the internal structures and dynamic behaviors of these solutions. These visualizations reveal the impact of various parametric values and wave velocities on the wave profiles, presented through three-dimensional, two-dimensional, and contour plots. Sensitivity analysis further elucidates the impact of parameter variations on system behavior, revealing the methods’ robustness and adaptability. These types of solitary waves are very important due to their flexibility in the long-distance optical communication. The study demonstrates the methods’ efficacy in solving complex nonlinear evolution equations and enhances the understanding of solitary wave solitons in diverse contexts. |
doi_str_mv | 10.1007/s11082-024-07573-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3113111025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113111025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1153-32b8ad6361cf833e1d2209e9fc251ce2e617df4c4c04860d7d8aa37883c3240c3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9WZpG263pbFf7DgRcFbiEm6ZqnpmrSV3U9v1gp6EgZmYN4b5v0IOUe4RABxFRGhYhmwPANRCJ7xAzLBQrCsQvFy-Gc-JicxrgGgzAuYEDM3g_LaGtpZ_ebdR28jrdtAlVfNduf8isa2cZ0KW_qphrR0nmoXdN-oQENr4jVVNFofXecG123p4GKvGrdTnWs9jV1vtqfkqFZNtGc_fUqeb2-eFvfZ8vHuYTFfZhqxSD-z10qZkpeo64pzi4YxmNlZrVmB2jJbojB1rnMNeVWCEaZSiouq4pqzHDSfkovx7ia0-yCdXLd9SEGi5IipEFiRVGxU6dDGGGwtN8G9p4ASQe5pypGmTDTlN03Jk4mPppjEfmXD7-l_XF9HkHlG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113111025</pqid></control><display><type>article</type><title>Advanced techniques for analyzing solitary waves in circular rods: a sensitivity visualization study</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sagher, Azad Ali ; Asjad, Muhammad Imran ; Muhammad, Taseer</creator><creatorcontrib>Sagher, Azad Ali ; Asjad, Muhammad Imran ; Muhammad, Taseer</creatorcontrib><description>This study evaluates the effectiveness of the New Sub-Equation Method and the Modified Khater Method in solving the longitudinal wave equation (LWE), a critical nonlinear partial differential equation in mathematical physics. In mathematical physics, the longitudinal wave equation arises with dispersion caused by transverse Poisson’s effect in a circular rod. Employ wave transformation to reformulate the model into ordinary differential equation. The research successfully identifies a range of exact traveling wave solutions, including kink, lump, anti-kink, combined bright-dark, periodic, and U-shaped solitons. Detailed graphical visualizations, produced using Wolfram Mathematica and MATLAB, offer in-depth insights into the internal structures and dynamic behaviors of these solutions. These visualizations reveal the impact of various parametric values and wave velocities on the wave profiles, presented through three-dimensional, two-dimensional, and contour plots. Sensitivity analysis further elucidates the impact of parameter variations on system behavior, revealing the methods’ robustness and adaptability. These types of solitary waves are very important due to their flexibility in the long-distance optical communication. The study demonstrates the methods’ efficacy in solving complex nonlinear evolution equations and enhances the understanding of solitary wave solitons in diverse contexts.</description><identifier>ISSN: 1572-817X</identifier><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-024-07573-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Effectiveness ; Electrical Engineering ; Impact analysis ; Lasers ; Longitudinal waves ; Mathematical analysis ; Nonlinear differential equations ; Nonlinear evolution equations ; Optical Devices ; Optics ; Ordinary differential equations ; Parameter robustness ; Parameter sensitivity ; Partial differential equations ; Photonics ; Physics ; Physics and Astronomy ; Sensitivity analysis ; Solitary waves ; Traveling waves ; Two dimensional analysis ; Wave dispersion ; Wave equations ; Wave velocity</subject><ispartof>Optical and quantum electronics, 2024-10, Vol.56 (10), Article 1673</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1153-32b8ad6361cf833e1d2209e9fc251ce2e617df4c4c04860d7d8aa37883c3240c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-024-07573-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-024-07573-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sagher, Azad Ali</creatorcontrib><creatorcontrib>Asjad, Muhammad Imran</creatorcontrib><creatorcontrib>Muhammad, Taseer</creatorcontrib><title>Advanced techniques for analyzing solitary waves in circular rods: a sensitivity visualization study</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>This study evaluates the effectiveness of the New Sub-Equation Method and the Modified Khater Method in solving the longitudinal wave equation (LWE), a critical nonlinear partial differential equation in mathematical physics. In mathematical physics, the longitudinal wave equation arises with dispersion caused by transverse Poisson’s effect in a circular rod. Employ wave transformation to reformulate the model into ordinary differential equation. The research successfully identifies a range of exact traveling wave solutions, including kink, lump, anti-kink, combined bright-dark, periodic, and U-shaped solitons. Detailed graphical visualizations, produced using Wolfram Mathematica and MATLAB, offer in-depth insights into the internal structures and dynamic behaviors of these solutions. These visualizations reveal the impact of various parametric values and wave velocities on the wave profiles, presented through three-dimensional, two-dimensional, and contour plots. Sensitivity analysis further elucidates the impact of parameter variations on system behavior, revealing the methods’ robustness and adaptability. These types of solitary waves are very important due to their flexibility in the long-distance optical communication. The study demonstrates the methods’ efficacy in solving complex nonlinear evolution equations and enhances the understanding of solitary wave solitons in diverse contexts.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Effectiveness</subject><subject>Electrical Engineering</subject><subject>Impact analysis</subject><subject>Lasers</subject><subject>Longitudinal waves</subject><subject>Mathematical analysis</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear evolution equations</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Ordinary differential equations</subject><subject>Parameter robustness</subject><subject>Parameter sensitivity</subject><subject>Partial differential equations</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sensitivity analysis</subject><subject>Solitary waves</subject><subject>Traveling waves</subject><subject>Two dimensional analysis</subject><subject>Wave dispersion</subject><subject>Wave equations</subject><subject>Wave velocity</subject><issn>1572-817X</issn><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9WZpG263pbFf7DgRcFbiEm6ZqnpmrSV3U9v1gp6EgZmYN4b5v0IOUe4RABxFRGhYhmwPANRCJ7xAzLBQrCsQvFy-Gc-JicxrgGgzAuYEDM3g_LaGtpZ_ebdR28jrdtAlVfNduf8isa2cZ0KW_qphrR0nmoXdN-oQENr4jVVNFofXecG123p4GKvGrdTnWs9jV1vtqfkqFZNtGc_fUqeb2-eFvfZ8vHuYTFfZhqxSD-z10qZkpeo64pzi4YxmNlZrVmB2jJbojB1rnMNeVWCEaZSiouq4pqzHDSfkovx7ia0-yCdXLd9SEGi5IipEFiRVGxU6dDGGGwtN8G9p4ASQe5pypGmTDTlN03Jk4mPppjEfmXD7-l_XF9HkHlG</recordid><startdate>20241004</startdate><enddate>20241004</enddate><creator>Sagher, Azad Ali</creator><creator>Asjad, Muhammad Imran</creator><creator>Muhammad, Taseer</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241004</creationdate><title>Advanced techniques for analyzing solitary waves in circular rods: a sensitivity visualization study</title><author>Sagher, Azad Ali ; Asjad, Muhammad Imran ; Muhammad, Taseer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1153-32b8ad6361cf833e1d2209e9fc251ce2e617df4c4c04860d7d8aa37883c3240c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Effectiveness</topic><topic>Electrical Engineering</topic><topic>Impact analysis</topic><topic>Lasers</topic><topic>Longitudinal waves</topic><topic>Mathematical analysis</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear evolution equations</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Ordinary differential equations</topic><topic>Parameter robustness</topic><topic>Parameter sensitivity</topic><topic>Partial differential equations</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sensitivity analysis</topic><topic>Solitary waves</topic><topic>Traveling waves</topic><topic>Two dimensional analysis</topic><topic>Wave dispersion</topic><topic>Wave equations</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sagher, Azad Ali</creatorcontrib><creatorcontrib>Asjad, Muhammad Imran</creatorcontrib><creatorcontrib>Muhammad, Taseer</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sagher, Azad Ali</au><au>Asjad, Muhammad Imran</au><au>Muhammad, Taseer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced techniques for analyzing solitary waves in circular rods: a sensitivity visualization study</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2024-10-04</date><risdate>2024</risdate><volume>56</volume><issue>10</issue><artnum>1673</artnum><issn>1572-817X</issn><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>This study evaluates the effectiveness of the New Sub-Equation Method and the Modified Khater Method in solving the longitudinal wave equation (LWE), a critical nonlinear partial differential equation in mathematical physics. In mathematical physics, the longitudinal wave equation arises with dispersion caused by transverse Poisson’s effect in a circular rod. Employ wave transformation to reformulate the model into ordinary differential equation. The research successfully identifies a range of exact traveling wave solutions, including kink, lump, anti-kink, combined bright-dark, periodic, and U-shaped solitons. Detailed graphical visualizations, produced using Wolfram Mathematica and MATLAB, offer in-depth insights into the internal structures and dynamic behaviors of these solutions. These visualizations reveal the impact of various parametric values and wave velocities on the wave profiles, presented through three-dimensional, two-dimensional, and contour plots. Sensitivity analysis further elucidates the impact of parameter variations on system behavior, revealing the methods’ robustness and adaptability. These types of solitary waves are very important due to their flexibility in the long-distance optical communication. The study demonstrates the methods’ efficacy in solving complex nonlinear evolution equations and enhances the understanding of solitary wave solitons in diverse contexts.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-024-07573-3</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1572-817X |
ispartof | Optical and quantum electronics, 2024-10, Vol.56 (10), Article 1673 |
issn | 1572-817X 0306-8919 1572-817X |
language | eng |
recordid | cdi_proquest_journals_3113111025 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Computer Communication Networks Effectiveness Electrical Engineering Impact analysis Lasers Longitudinal waves Mathematical analysis Nonlinear differential equations Nonlinear evolution equations Optical Devices Optics Ordinary differential equations Parameter robustness Parameter sensitivity Partial differential equations Photonics Physics Physics and Astronomy Sensitivity analysis Solitary waves Traveling waves Two dimensional analysis Wave dispersion Wave equations Wave velocity |
title | Advanced techniques for analyzing solitary waves in circular rods: a sensitivity visualization study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20techniques%20for%20analyzing%20solitary%20waves%20in%20circular%20rods:%20a%20sensitivity%20visualization%20study&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Sagher,%20Azad%20Ali&rft.date=2024-10-04&rft.volume=56&rft.issue=10&rft.artnum=1673&rft.issn=1572-817X&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-024-07573-3&rft_dat=%3Cproquest_cross%3E3113111025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113111025&rft_id=info:pmid/&rfr_iscdi=true |