Advanced techniques for analyzing solitary waves in circular rods: a sensitivity visualization study

This study evaluates the effectiveness of the New Sub-Equation Method and the Modified Khater Method in solving the longitudinal wave equation (LWE), a critical nonlinear partial differential equation in mathematical physics. In mathematical physics, the longitudinal wave equation arises with disper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2024-10, Vol.56 (10), Article 1673
Hauptverfasser: Sagher, Azad Ali, Asjad, Muhammad Imran, Muhammad, Taseer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Optical and quantum electronics
container_volume 56
creator Sagher, Azad Ali
Asjad, Muhammad Imran
Muhammad, Taseer
description This study evaluates the effectiveness of the New Sub-Equation Method and the Modified Khater Method in solving the longitudinal wave equation (LWE), a critical nonlinear partial differential equation in mathematical physics. In mathematical physics, the longitudinal wave equation arises with dispersion caused by transverse Poisson’s effect in a circular rod. Employ wave transformation to reformulate the model into ordinary differential equation. The research successfully identifies a range of exact traveling wave solutions, including kink, lump, anti-kink, combined bright-dark, periodic, and U-shaped solitons. Detailed graphical visualizations, produced using Wolfram Mathematica and MATLAB, offer in-depth insights into the internal structures and dynamic behaviors of these solutions. These visualizations reveal the impact of various parametric values and wave velocities on the wave profiles, presented through three-dimensional, two-dimensional, and contour plots. Sensitivity analysis further elucidates the impact of parameter variations on system behavior, revealing the methods’ robustness and adaptability. These types of solitary waves are very important due to their flexibility in the long-distance optical communication. The study demonstrates the methods’ efficacy in solving complex nonlinear evolution equations and enhances the understanding of solitary wave solitons in diverse contexts.
doi_str_mv 10.1007/s11082-024-07573-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3113111025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113111025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1153-32b8ad6361cf833e1d2209e9fc251ce2e617df4c4c04860d7d8aa37883c3240c3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9WZpG263pbFf7DgRcFbiEm6ZqnpmrSV3U9v1gp6EgZmYN4b5v0IOUe4RABxFRGhYhmwPANRCJ7xAzLBQrCsQvFy-Gc-JicxrgGgzAuYEDM3g_LaGtpZ_ebdR28jrdtAlVfNduf8isa2cZ0KW_qphrR0nmoXdN-oQENr4jVVNFofXecG123p4GKvGrdTnWs9jV1vtqfkqFZNtGc_fUqeb2-eFvfZ8vHuYTFfZhqxSD-z10qZkpeo64pzi4YxmNlZrVmB2jJbojB1rnMNeVWCEaZSiouq4pqzHDSfkovx7ia0-yCdXLd9SEGi5IipEFiRVGxU6dDGGGwtN8G9p4ASQe5pypGmTDTlN03Jk4mPppjEfmXD7-l_XF9HkHlG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113111025</pqid></control><display><type>article</type><title>Advanced techniques for analyzing solitary waves in circular rods: a sensitivity visualization study</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sagher, Azad Ali ; Asjad, Muhammad Imran ; Muhammad, Taseer</creator><creatorcontrib>Sagher, Azad Ali ; Asjad, Muhammad Imran ; Muhammad, Taseer</creatorcontrib><description>This study evaluates the effectiveness of the New Sub-Equation Method and the Modified Khater Method in solving the longitudinal wave equation (LWE), a critical nonlinear partial differential equation in mathematical physics. In mathematical physics, the longitudinal wave equation arises with dispersion caused by transverse Poisson’s effect in a circular rod. Employ wave transformation to reformulate the model into ordinary differential equation. The research successfully identifies a range of exact traveling wave solutions, including kink, lump, anti-kink, combined bright-dark, periodic, and U-shaped solitons. Detailed graphical visualizations, produced using Wolfram Mathematica and MATLAB, offer in-depth insights into the internal structures and dynamic behaviors of these solutions. These visualizations reveal the impact of various parametric values and wave velocities on the wave profiles, presented through three-dimensional, two-dimensional, and contour plots. Sensitivity analysis further elucidates the impact of parameter variations on system behavior, revealing the methods’ robustness and adaptability. These types of solitary waves are very important due to their flexibility in the long-distance optical communication. The study demonstrates the methods’ efficacy in solving complex nonlinear evolution equations and enhances the understanding of solitary wave solitons in diverse contexts.</description><identifier>ISSN: 1572-817X</identifier><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-024-07573-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Effectiveness ; Electrical Engineering ; Impact analysis ; Lasers ; Longitudinal waves ; Mathematical analysis ; Nonlinear differential equations ; Nonlinear evolution equations ; Optical Devices ; Optics ; Ordinary differential equations ; Parameter robustness ; Parameter sensitivity ; Partial differential equations ; Photonics ; Physics ; Physics and Astronomy ; Sensitivity analysis ; Solitary waves ; Traveling waves ; Two dimensional analysis ; Wave dispersion ; Wave equations ; Wave velocity</subject><ispartof>Optical and quantum electronics, 2024-10, Vol.56 (10), Article 1673</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1153-32b8ad6361cf833e1d2209e9fc251ce2e617df4c4c04860d7d8aa37883c3240c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-024-07573-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-024-07573-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sagher, Azad Ali</creatorcontrib><creatorcontrib>Asjad, Muhammad Imran</creatorcontrib><creatorcontrib>Muhammad, Taseer</creatorcontrib><title>Advanced techniques for analyzing solitary waves in circular rods: a sensitivity visualization study</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>This study evaluates the effectiveness of the New Sub-Equation Method and the Modified Khater Method in solving the longitudinal wave equation (LWE), a critical nonlinear partial differential equation in mathematical physics. In mathematical physics, the longitudinal wave equation arises with dispersion caused by transverse Poisson’s effect in a circular rod. Employ wave transformation to reformulate the model into ordinary differential equation. The research successfully identifies a range of exact traveling wave solutions, including kink, lump, anti-kink, combined bright-dark, periodic, and U-shaped solitons. Detailed graphical visualizations, produced using Wolfram Mathematica and MATLAB, offer in-depth insights into the internal structures and dynamic behaviors of these solutions. These visualizations reveal the impact of various parametric values and wave velocities on the wave profiles, presented through three-dimensional, two-dimensional, and contour plots. Sensitivity analysis further elucidates the impact of parameter variations on system behavior, revealing the methods’ robustness and adaptability. These types of solitary waves are very important due to their flexibility in the long-distance optical communication. The study demonstrates the methods’ efficacy in solving complex nonlinear evolution equations and enhances the understanding of solitary wave solitons in diverse contexts.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Effectiveness</subject><subject>Electrical Engineering</subject><subject>Impact analysis</subject><subject>Lasers</subject><subject>Longitudinal waves</subject><subject>Mathematical analysis</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear evolution equations</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Ordinary differential equations</subject><subject>Parameter robustness</subject><subject>Parameter sensitivity</subject><subject>Partial differential equations</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sensitivity analysis</subject><subject>Solitary waves</subject><subject>Traveling waves</subject><subject>Two dimensional analysis</subject><subject>Wave dispersion</subject><subject>Wave equations</subject><subject>Wave velocity</subject><issn>1572-817X</issn><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9WZpG263pbFf7DgRcFbiEm6ZqnpmrSV3U9v1gp6EgZmYN4b5v0IOUe4RABxFRGhYhmwPANRCJ7xAzLBQrCsQvFy-Gc-JicxrgGgzAuYEDM3g_LaGtpZ_ebdR28jrdtAlVfNduf8isa2cZ0KW_qphrR0nmoXdN-oQENr4jVVNFofXecG123p4GKvGrdTnWs9jV1vtqfkqFZNtGc_fUqeb2-eFvfZ8vHuYTFfZhqxSD-z10qZkpeo64pzi4YxmNlZrVmB2jJbojB1rnMNeVWCEaZSiouq4pqzHDSfkovx7ia0-yCdXLd9SEGi5IipEFiRVGxU6dDGGGwtN8G9p4ASQe5pypGmTDTlN03Jk4mPppjEfmXD7-l_XF9HkHlG</recordid><startdate>20241004</startdate><enddate>20241004</enddate><creator>Sagher, Azad Ali</creator><creator>Asjad, Muhammad Imran</creator><creator>Muhammad, Taseer</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241004</creationdate><title>Advanced techniques for analyzing solitary waves in circular rods: a sensitivity visualization study</title><author>Sagher, Azad Ali ; Asjad, Muhammad Imran ; Muhammad, Taseer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1153-32b8ad6361cf833e1d2209e9fc251ce2e617df4c4c04860d7d8aa37883c3240c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Effectiveness</topic><topic>Electrical Engineering</topic><topic>Impact analysis</topic><topic>Lasers</topic><topic>Longitudinal waves</topic><topic>Mathematical analysis</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear evolution equations</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Ordinary differential equations</topic><topic>Parameter robustness</topic><topic>Parameter sensitivity</topic><topic>Partial differential equations</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sensitivity analysis</topic><topic>Solitary waves</topic><topic>Traveling waves</topic><topic>Two dimensional analysis</topic><topic>Wave dispersion</topic><topic>Wave equations</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sagher, Azad Ali</creatorcontrib><creatorcontrib>Asjad, Muhammad Imran</creatorcontrib><creatorcontrib>Muhammad, Taseer</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sagher, Azad Ali</au><au>Asjad, Muhammad Imran</au><au>Muhammad, Taseer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced techniques for analyzing solitary waves in circular rods: a sensitivity visualization study</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2024-10-04</date><risdate>2024</risdate><volume>56</volume><issue>10</issue><artnum>1673</artnum><issn>1572-817X</issn><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>This study evaluates the effectiveness of the New Sub-Equation Method and the Modified Khater Method in solving the longitudinal wave equation (LWE), a critical nonlinear partial differential equation in mathematical physics. In mathematical physics, the longitudinal wave equation arises with dispersion caused by transverse Poisson’s effect in a circular rod. Employ wave transformation to reformulate the model into ordinary differential equation. The research successfully identifies a range of exact traveling wave solutions, including kink, lump, anti-kink, combined bright-dark, periodic, and U-shaped solitons. Detailed graphical visualizations, produced using Wolfram Mathematica and MATLAB, offer in-depth insights into the internal structures and dynamic behaviors of these solutions. These visualizations reveal the impact of various parametric values and wave velocities on the wave profiles, presented through three-dimensional, two-dimensional, and contour plots. Sensitivity analysis further elucidates the impact of parameter variations on system behavior, revealing the methods’ robustness and adaptability. These types of solitary waves are very important due to their flexibility in the long-distance optical communication. The study demonstrates the methods’ efficacy in solving complex nonlinear evolution equations and enhances the understanding of solitary wave solitons in diverse contexts.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-024-07573-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 1572-817X
ispartof Optical and quantum electronics, 2024-10, Vol.56 (10), Article 1673
issn 1572-817X
0306-8919
1572-817X
language eng
recordid cdi_proquest_journals_3113111025
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Computer Communication Networks
Effectiveness
Electrical Engineering
Impact analysis
Lasers
Longitudinal waves
Mathematical analysis
Nonlinear differential equations
Nonlinear evolution equations
Optical Devices
Optics
Ordinary differential equations
Parameter robustness
Parameter sensitivity
Partial differential equations
Photonics
Physics
Physics and Astronomy
Sensitivity analysis
Solitary waves
Traveling waves
Two dimensional analysis
Wave dispersion
Wave equations
Wave velocity
title Advanced techniques for analyzing solitary waves in circular rods: a sensitivity visualization study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20techniques%20for%20analyzing%20solitary%20waves%20in%20circular%20rods:%20a%20sensitivity%20visualization%20study&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Sagher,%20Azad%20Ali&rft.date=2024-10-04&rft.volume=56&rft.issue=10&rft.artnum=1673&rft.issn=1572-817X&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-024-07573-3&rft_dat=%3Cproquest_cross%3E3113111025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113111025&rft_id=info:pmid/&rfr_iscdi=true