Cosection localization for d-manifolds and (-2)-shifted symplectic derived schemes, revisited

This is a continuation of prior work of the author on cosection localization for d-manifolds. We construct reduced virtual fundamental classes for derived manifolds with surjective cosections and cosection localized virtual fundamental classes for ( - 2 ) -shifted symplectic derived schemes in large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2024-11, Vol.308 (3), Article 42
1. Verfasser: Savvas, Michail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Mathematische Zeitschrift
container_volume 308
creator Savvas, Michail
description This is a continuation of prior work of the author on cosection localization for d-manifolds. We construct reduced virtual fundamental classes for derived manifolds with surjective cosections and cosection localized virtual fundamental classes for ( - 2 ) -shifted symplectic derived schemes in larger generality. Moreover, using recent results of Oh–Thomas, we show that the algebraic and differential geometric constructions of reduced and cosection localized virtual fundamental classes of ( - 2 ) -shifted symplectic derived schemes yield the same result in homology. We obtain applications towards the construction and integrality of reduced invariants in Donaldson–Thomas theory of Calabi–Yau fourfolds.
doi_str_mv 10.1007/s00209-024-03593-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3113110983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113110983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-5aaf055a00dd93d6c99514888e4a62ea253dc7e1425e3bc9e71ad64b6ccf8dc3</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWC9_wKcFXxSMTm6b3Ucp3qDgS18lpEnWpuxuarIt1F9v2hV8EwaGmTnfGTgIXRG4JwDyIQFQqDFQjoGJmmF5hCaEM4pJRdkxmuS7wKKS_BSdpbQCyEfJJ-hjGpIzgw990QajW_-tD0MTYmFxp3vfhNamQve2uMH0FqelbwZni7Tr1u2eNIV10W_3K7N0nUt3RXRbn3xWXaCTRrfJXf72czR_fppPX_Hs_eVt-jjDhgIMWGjdgBAawNqa2dLUtSC8qirHdUmdpoJZIx3hVDi2MLWTRNuSL0pjmsoado6uR9t1DF8blwa1CpvY54-KEZIL6oplFR1VJoaUomvUOvpOx50ioPYpqjFFlVNUhxSVzBAboZTF_aeLf9b_UD9lSXWW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113110983</pqid></control><display><type>article</type><title>Cosection localization for d-manifolds and (-2)-shifted symplectic derived schemes, revisited</title><source>SpringerLink Journals - AutoHoldings</source><creator>Savvas, Michail</creator><creatorcontrib>Savvas, Michail</creatorcontrib><description>This is a continuation of prior work of the author on cosection localization for d-manifolds. We construct reduced virtual fundamental classes for derived manifolds with surjective cosections and cosection localized virtual fundamental classes for ( - 2 ) -shifted symplectic derived schemes in larger generality. Moreover, using recent results of Oh–Thomas, we show that the algebraic and differential geometric constructions of reduced and cosection localized virtual fundamental classes of ( - 2 ) -shifted symplectic derived schemes yield the same result in homology. We obtain applications towards the construction and integrality of reduced invariants in Donaldson–Thomas theory of Calabi–Yau fourfolds.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-024-03593-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Homology ; Localization ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische Zeitschrift, 2024-11, Vol.308 (3), Article 42</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-5aaf055a00dd93d6c99514888e4a62ea253dc7e1425e3bc9e71ad64b6ccf8dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-024-03593-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-024-03593-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Savvas, Michail</creatorcontrib><title>Cosection localization for d-manifolds and (-2)-shifted symplectic derived schemes, revisited</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>This is a continuation of prior work of the author on cosection localization for d-manifolds. We construct reduced virtual fundamental classes for derived manifolds with surjective cosections and cosection localized virtual fundamental classes for ( - 2 ) -shifted symplectic derived schemes in larger generality. Moreover, using recent results of Oh–Thomas, we show that the algebraic and differential geometric constructions of reduced and cosection localized virtual fundamental classes of ( - 2 ) -shifted symplectic derived schemes yield the same result in homology. We obtain applications towards the construction and integrality of reduced invariants in Donaldson–Thomas theory of Calabi–Yau fourfolds.</description><subject>Homology</subject><subject>Localization</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMoWC9_wKcFXxSMTm6b3Ucp3qDgS18lpEnWpuxuarIt1F9v2hV8EwaGmTnfGTgIXRG4JwDyIQFQqDFQjoGJmmF5hCaEM4pJRdkxmuS7wKKS_BSdpbQCyEfJJ-hjGpIzgw990QajW_-tD0MTYmFxp3vfhNamQve2uMH0FqelbwZni7Tr1u2eNIV10W_3K7N0nUt3RXRbn3xWXaCTRrfJXf72czR_fppPX_Hs_eVt-jjDhgIMWGjdgBAawNqa2dLUtSC8qirHdUmdpoJZIx3hVDi2MLWTRNuSL0pjmsoado6uR9t1DF8blwa1CpvY54-KEZIL6oplFR1VJoaUomvUOvpOx50ioPYpqjFFlVNUhxSVzBAboZTF_aeLf9b_UD9lSXWW</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Savvas, Michail</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241101</creationdate><title>Cosection localization for d-manifolds and (-2)-shifted symplectic derived schemes, revisited</title><author>Savvas, Michail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-5aaf055a00dd93d6c99514888e4a62ea253dc7e1425e3bc9e71ad64b6ccf8dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Homology</topic><topic>Localization</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savvas, Michail</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Savvas, Michail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cosection localization for d-manifolds and (-2)-shifted symplectic derived schemes, revisited</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>308</volume><issue>3</issue><artnum>42</artnum><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>This is a continuation of prior work of the author on cosection localization for d-manifolds. We construct reduced virtual fundamental classes for derived manifolds with surjective cosections and cosection localized virtual fundamental classes for ( - 2 ) -shifted symplectic derived schemes in larger generality. Moreover, using recent results of Oh–Thomas, we show that the algebraic and differential geometric constructions of reduced and cosection localized virtual fundamental classes of ( - 2 ) -shifted symplectic derived schemes yield the same result in homology. We obtain applications towards the construction and integrality of reduced invariants in Donaldson–Thomas theory of Calabi–Yau fourfolds.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-024-03593-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2024-11, Vol.308 (3), Article 42
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_3113110983
source SpringerLink Journals - AutoHoldings
subjects Homology
Localization
Mathematics
Mathematics and Statistics
title Cosection localization for d-manifolds and (-2)-shifted symplectic derived schemes, revisited
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cosection%20localization%20for%20d-manifolds%20and%20(-2)-shifted%20symplectic%20derived%20schemes,%20revisited&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Savvas,%20Michail&rft.date=2024-11-01&rft.volume=308&rft.issue=3&rft.artnum=42&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-024-03593-7&rft_dat=%3Cproquest_cross%3E3113110983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113110983&rft_id=info:pmid/&rfr_iscdi=true