Cosection localization for d-manifolds and (-2)-shifted symplectic derived schemes, revisited
This is a continuation of prior work of the author on cosection localization for d-manifolds. We construct reduced virtual fundamental classes for derived manifolds with surjective cosections and cosection localized virtual fundamental classes for ( - 2 ) -shifted symplectic derived schemes in large...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2024-11, Vol.308 (3), Article 42 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Mathematische Zeitschrift |
container_volume | 308 |
creator | Savvas, Michail |
description | This is a continuation of prior work of the author on cosection localization for d-manifolds. We construct reduced virtual fundamental classes for derived manifolds with surjective cosections and cosection localized virtual fundamental classes for
(
-
2
)
-shifted symplectic derived schemes in larger generality. Moreover, using recent results of Oh–Thomas, we show that the algebraic and differential geometric constructions of reduced and cosection localized virtual fundamental classes of
(
-
2
)
-shifted symplectic derived schemes yield the same result in homology. We obtain applications towards the construction and integrality of reduced invariants in Donaldson–Thomas theory of Calabi–Yau fourfolds. |
doi_str_mv | 10.1007/s00209-024-03593-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3113110983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3113110983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-5aaf055a00dd93d6c99514888e4a62ea253dc7e1425e3bc9e71ad64b6ccf8dc3</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWC9_wKcFXxSMTm6b3Ucp3qDgS18lpEnWpuxuarIt1F9v2hV8EwaGmTnfGTgIXRG4JwDyIQFQqDFQjoGJmmF5hCaEM4pJRdkxmuS7wKKS_BSdpbQCyEfJJ-hjGpIzgw990QajW_-tD0MTYmFxp3vfhNamQve2uMH0FqelbwZni7Tr1u2eNIV10W_3K7N0nUt3RXRbn3xWXaCTRrfJXf72czR_fppPX_Hs_eVt-jjDhgIMWGjdgBAawNqa2dLUtSC8qirHdUmdpoJZIx3hVDi2MLWTRNuSL0pjmsoado6uR9t1DF8blwa1CpvY54-KEZIL6oplFR1VJoaUomvUOvpOx50ioPYpqjFFlVNUhxSVzBAboZTF_aeLf9b_UD9lSXWW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113110983</pqid></control><display><type>article</type><title>Cosection localization for d-manifolds and (-2)-shifted symplectic derived schemes, revisited</title><source>SpringerLink Journals - AutoHoldings</source><creator>Savvas, Michail</creator><creatorcontrib>Savvas, Michail</creatorcontrib><description>This is a continuation of prior work of the author on cosection localization for d-manifolds. We construct reduced virtual fundamental classes for derived manifolds with surjective cosections and cosection localized virtual fundamental classes for
(
-
2
)
-shifted symplectic derived schemes in larger generality. Moreover, using recent results of Oh–Thomas, we show that the algebraic and differential geometric constructions of reduced and cosection localized virtual fundamental classes of
(
-
2
)
-shifted symplectic derived schemes yield the same result in homology. We obtain applications towards the construction and integrality of reduced invariants in Donaldson–Thomas theory of Calabi–Yau fourfolds.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-024-03593-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Homology ; Localization ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische Zeitschrift, 2024-11, Vol.308 (3), Article 42</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-5aaf055a00dd93d6c99514888e4a62ea253dc7e1425e3bc9e71ad64b6ccf8dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-024-03593-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-024-03593-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Savvas, Michail</creatorcontrib><title>Cosection localization for d-manifolds and (-2)-shifted symplectic derived schemes, revisited</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>This is a continuation of prior work of the author on cosection localization for d-manifolds. We construct reduced virtual fundamental classes for derived manifolds with surjective cosections and cosection localized virtual fundamental classes for
(
-
2
)
-shifted symplectic derived schemes in larger generality. Moreover, using recent results of Oh–Thomas, we show that the algebraic and differential geometric constructions of reduced and cosection localized virtual fundamental classes of
(
-
2
)
-shifted symplectic derived schemes yield the same result in homology. We obtain applications towards the construction and integrality of reduced invariants in Donaldson–Thomas theory of Calabi–Yau fourfolds.</description><subject>Homology</subject><subject>Localization</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMoWC9_wKcFXxSMTm6b3Ucp3qDgS18lpEnWpuxuarIt1F9v2hV8EwaGmTnfGTgIXRG4JwDyIQFQqDFQjoGJmmF5hCaEM4pJRdkxmuS7wKKS_BSdpbQCyEfJJ-hjGpIzgw990QajW_-tD0MTYmFxp3vfhNamQve2uMH0FqelbwZni7Tr1u2eNIV10W_3K7N0nUt3RXRbn3xWXaCTRrfJXf72czR_fppPX_Hs_eVt-jjDhgIMWGjdgBAawNqa2dLUtSC8qirHdUmdpoJZIx3hVDi2MLWTRNuSL0pjmsoado6uR9t1DF8blwa1CpvY54-KEZIL6oplFR1VJoaUomvUOvpOx50ioPYpqjFFlVNUhxSVzBAboZTF_aeLf9b_UD9lSXWW</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Savvas, Michail</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241101</creationdate><title>Cosection localization for d-manifolds and (-2)-shifted symplectic derived schemes, revisited</title><author>Savvas, Michail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-5aaf055a00dd93d6c99514888e4a62ea253dc7e1425e3bc9e71ad64b6ccf8dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Homology</topic><topic>Localization</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savvas, Michail</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Savvas, Michail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cosection localization for d-manifolds and (-2)-shifted symplectic derived schemes, revisited</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>308</volume><issue>3</issue><artnum>42</artnum><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>This is a continuation of prior work of the author on cosection localization for d-manifolds. We construct reduced virtual fundamental classes for derived manifolds with surjective cosections and cosection localized virtual fundamental classes for
(
-
2
)
-shifted symplectic derived schemes in larger generality. Moreover, using recent results of Oh–Thomas, we show that the algebraic and differential geometric constructions of reduced and cosection localized virtual fundamental classes of
(
-
2
)
-shifted symplectic derived schemes yield the same result in homology. We obtain applications towards the construction and integrality of reduced invariants in Donaldson–Thomas theory of Calabi–Yau fourfolds.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-024-03593-7</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5874 |
ispartof | Mathematische Zeitschrift, 2024-11, Vol.308 (3), Article 42 |
issn | 0025-5874 1432-1823 |
language | eng |
recordid | cdi_proquest_journals_3113110983 |
source | SpringerLink Journals - AutoHoldings |
subjects | Homology Localization Mathematics Mathematics and Statistics |
title | Cosection localization for d-manifolds and (-2)-shifted symplectic derived schemes, revisited |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cosection%20localization%20for%20d-manifolds%20and%20(-2)-shifted%20symplectic%20derived%20schemes,%20revisited&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Savvas,%20Michail&rft.date=2024-11-01&rft.volume=308&rft.issue=3&rft.artnum=42&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-024-03593-7&rft_dat=%3Cproquest_cross%3E3113110983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113110983&rft_id=info:pmid/&rfr_iscdi=true |