Towards new relativistic doubly \(\kappa\)-deformed D=4 quantum phase spaces

We propose new noncommutative (NC) models of quantum phase spaces, containing a pair of \(\kappa\)-deformed Poincaré algebras, with two independent \(\kappa\) and \(\tilde{\kappa}\)-deformations in space-time and fourmomenta sectors. The first quantum phase space can be obtained by contractions \(M,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Lukierski, Jerzy, Meljanac, Stjepan, Mignemi, Salvatore, Anna Pachołand Mariusz Woronowicz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lukierski, Jerzy
Meljanac, Stjepan
Mignemi, Salvatore
Anna Pachołand Mariusz Woronowicz
description We propose new noncommutative (NC) models of quantum phase spaces, containing a pair of \(\kappa\)-deformed Poincaré algebras, with two independent \(\kappa\) and \(\tilde{\kappa}\)-deformations in space-time and fourmomenta sectors. The first quantum phase space can be obtained by contractions \(M,R\to \infty\) of recently introduced doubly \(\kappa\)-deformed \((\kappa,\tilde{\kappa})\)-Yang models, with the parameters \(M,R\) describing inverse space-time and fourmomenta curvatures and constant four-vectors \(a_\mu, b_\mu\) determining one of nine types of \((\kappa,\tilde{\kappa})\) deformations. The second model is provided by the non-linear doubly \(\kappa\)-deformed TSR algebra spanned by 14 coset \(\hat{o}(1,5)/\hat {o}(2)\) generators. The basic algebraic difference between the two models is the following: the first one, described by \(\hat{o}(1,5)\) Lie algebra can be supplemented by the Hopf algebra structure, while the second model contains the quantum phase space commutators \([\hat{x}_\mu,\hat{q}_\nu]\) describing the quantum-deformed Heisenberg algebra relations with the standard numerical \(i\hbar\eta_{\mu\nu}\) term.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3112964883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112964883</sourcerecordid><originalsourceid>FETCH-proquest_journals_31129648833</originalsourceid><addsrcrecordid>eNqNyr0OgjAUQOHGxESivMNNXHQggRYQByd_4uDISEIqLREEWnpbiW-vgw_gdIbvzIhHGYuCLKZ0QXzENgxDmu5okjCP3HI1cSMQBjmBkR23zatB21QglLt3byg2xZNrzYttIGStTC8FnA4xjI4P1vWgHxwloOaVxBWZ17xD6f-6JOvLOT9eA23U6CTaslXODF8qWRTRfRpnGWP_XR8zVD0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112964883</pqid></control><display><type>article</type><title>Towards new relativistic doubly \(\kappa\)-deformed D=4 quantum phase spaces</title><source>Free E- Journals</source><creator>Lukierski, Jerzy ; Meljanac, Stjepan ; Mignemi, Salvatore ; Anna Pachołand Mariusz Woronowicz</creator><creatorcontrib>Lukierski, Jerzy ; Meljanac, Stjepan ; Mignemi, Salvatore ; Anna Pachołand Mariusz Woronowicz</creatorcontrib><description>We propose new noncommutative (NC) models of quantum phase spaces, containing a pair of \(\kappa\)-deformed Poincaré algebras, with two independent \(\kappa\) and \(\tilde{\kappa}\)-deformations in space-time and fourmomenta sectors. The first quantum phase space can be obtained by contractions \(M,R\to \infty\) of recently introduced doubly \(\kappa\)-deformed \((\kappa,\tilde{\kappa})\)-Yang models, with the parameters \(M,R\) describing inverse space-time and fourmomenta curvatures and constant four-vectors \(a_\mu, b_\mu\) determining one of nine types of \((\kappa,\tilde{\kappa})\) deformations. The second model is provided by the non-linear doubly \(\kappa\)-deformed TSR algebra spanned by 14 coset \(\hat{o}(1,5)/\hat {o}(2)\) generators. The basic algebraic difference between the two models is the following: the first one, described by \(\hat{o}(1,5)\) Lie algebra can be supplemented by the Hopf algebra structure, while the second model contains the quantum phase space commutators \([\hat{x}_\mu,\hat{q}_\nu]\) describing the quantum-deformed Heisenberg algebra relations with the standard numerical \(i\hbar\eta_{\mu\nu}\) term.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Commutators ; Deformation ; Lie groups</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lukierski, Jerzy</creatorcontrib><creatorcontrib>Meljanac, Stjepan</creatorcontrib><creatorcontrib>Mignemi, Salvatore</creatorcontrib><creatorcontrib>Anna Pachołand Mariusz Woronowicz</creatorcontrib><title>Towards new relativistic doubly \(\kappa\)-deformed D=4 quantum phase spaces</title><title>arXiv.org</title><description>We propose new noncommutative (NC) models of quantum phase spaces, containing a pair of \(\kappa\)-deformed Poincaré algebras, with two independent \(\kappa\) and \(\tilde{\kappa}\)-deformations in space-time and fourmomenta sectors. The first quantum phase space can be obtained by contractions \(M,R\to \infty\) of recently introduced doubly \(\kappa\)-deformed \((\kappa,\tilde{\kappa})\)-Yang models, with the parameters \(M,R\) describing inverse space-time and fourmomenta curvatures and constant four-vectors \(a_\mu, b_\mu\) determining one of nine types of \((\kappa,\tilde{\kappa})\) deformations. The second model is provided by the non-linear doubly \(\kappa\)-deformed TSR algebra spanned by 14 coset \(\hat{o}(1,5)/\hat {o}(2)\) generators. The basic algebraic difference between the two models is the following: the first one, described by \(\hat{o}(1,5)\) Lie algebra can be supplemented by the Hopf algebra structure, while the second model contains the quantum phase space commutators \([\hat{x}_\mu,\hat{q}_\nu]\) describing the quantum-deformed Heisenberg algebra relations with the standard numerical \(i\hbar\eta_{\mu\nu}\) term.</description><subject>Algebra</subject><subject>Commutators</subject><subject>Deformation</subject><subject>Lie groups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0OgjAUQOHGxESivMNNXHQggRYQByd_4uDISEIqLREEWnpbiW-vgw_gdIbvzIhHGYuCLKZ0QXzENgxDmu5okjCP3HI1cSMQBjmBkR23zatB21QglLt3byg2xZNrzYttIGStTC8FnA4xjI4P1vWgHxwloOaVxBWZ17xD6f-6JOvLOT9eA23U6CTaslXODF8qWRTRfRpnGWP_XR8zVD0w</recordid><startdate>20241003</startdate><enddate>20241003</enddate><creator>Lukierski, Jerzy</creator><creator>Meljanac, Stjepan</creator><creator>Mignemi, Salvatore</creator><creator>Anna Pachołand Mariusz Woronowicz</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241003</creationdate><title>Towards new relativistic doubly \(\kappa\)-deformed D=4 quantum phase spaces</title><author>Lukierski, Jerzy ; Meljanac, Stjepan ; Mignemi, Salvatore ; Anna Pachołand Mariusz Woronowicz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31129648833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Commutators</topic><topic>Deformation</topic><topic>Lie groups</topic><toplevel>online_resources</toplevel><creatorcontrib>Lukierski, Jerzy</creatorcontrib><creatorcontrib>Meljanac, Stjepan</creatorcontrib><creatorcontrib>Mignemi, Salvatore</creatorcontrib><creatorcontrib>Anna Pachołand Mariusz Woronowicz</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lukierski, Jerzy</au><au>Meljanac, Stjepan</au><au>Mignemi, Salvatore</au><au>Anna Pachołand Mariusz Woronowicz</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards new relativistic doubly \(\kappa\)-deformed D=4 quantum phase spaces</atitle><jtitle>arXiv.org</jtitle><date>2024-10-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We propose new noncommutative (NC) models of quantum phase spaces, containing a pair of \(\kappa\)-deformed Poincaré algebras, with two independent \(\kappa\) and \(\tilde{\kappa}\)-deformations in space-time and fourmomenta sectors. The first quantum phase space can be obtained by contractions \(M,R\to \infty\) of recently introduced doubly \(\kappa\)-deformed \((\kappa,\tilde{\kappa})\)-Yang models, with the parameters \(M,R\) describing inverse space-time and fourmomenta curvatures and constant four-vectors \(a_\mu, b_\mu\) determining one of nine types of \((\kappa,\tilde{\kappa})\) deformations. The second model is provided by the non-linear doubly \(\kappa\)-deformed TSR algebra spanned by 14 coset \(\hat{o}(1,5)/\hat {o}(2)\) generators. The basic algebraic difference between the two models is the following: the first one, described by \(\hat{o}(1,5)\) Lie algebra can be supplemented by the Hopf algebra structure, while the second model contains the quantum phase space commutators \([\hat{x}_\mu,\hat{q}_\nu]\) describing the quantum-deformed Heisenberg algebra relations with the standard numerical \(i\hbar\eta_{\mu\nu}\) term.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3112964883
source Free E- Journals
subjects Algebra
Commutators
Deformation
Lie groups
title Towards new relativistic doubly \(\kappa\)-deformed D=4 quantum phase spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20new%20relativistic%20doubly%20%5C(%5Ckappa%5C)-deformed%20D=4%20quantum%20phase%20spaces&rft.jtitle=arXiv.org&rft.au=Lukierski,%20Jerzy&rft.date=2024-10-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3112964883%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112964883&rft_id=info:pmid/&rfr_iscdi=true