On the adaption of biological transport networks affected by complex domains

This paper aims to simulate and analyze scenarios involving obstacles and parasitic organisms during the growth of biological structures. We introduce an innovative model of biological transport networks in complex domains. By manipulating sources and sinks, we simulate two distinct types of domains...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-10, Vol.36 (10)
Hauptverfasser: Li, Yibao, Lv, Zhixian, Xia, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Li, Yibao
Lv, Zhixian
Xia, Qing
description This paper aims to simulate and analyze scenarios involving obstacles and parasitic organisms during the growth of biological structures. We introduce an innovative model of biological transport networks in complex domains. By manipulating sources and sinks, we simulate two distinct types of domains. One obstructs nutrient transport without absorbing energy. The other one obstructs transport and absorbs energy. Our model adheres to the continuous functional energy dissipation law. Employing a Crank–Nicolson type method ensures second-order time accuracy. The phase field-based discrete system is decoupled, linear, and unconditionally stable, facilitating straightforward implementation of the algorithm. Our scheme maintains stability in addressing the stiffness of the hybrid system. Our research demonstrates that effective mathematical modeling and numerical methods can accurately simulate and analyze the growth of biological transport networks in complex domains.
doi_str_mv 10.1063/5.0231079
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3112932342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112932342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c979-8a5d06c4bc81fde94c8d292af03ed5378c9a869e92ecd715985f0835c15db2883</originalsourceid><addsrcrecordid>eNp90E1LAzEQgOEgCtbqwX8Q8KSwdZI02eQoxS8o9NJ7yOZDt243a5Ki_fe2bM-eZg4PM_AidEtgRkCwRz4DygjU6gxNCEhV1UKI8-NeQyUEI5foKucNADBFxQQtVz0unx4bZ4bSxh7HgJs2dvGjtabDJZk-DzEV3PvyE9NXxiYEb4t3uNljG7dD53-xi1vT9vkaXQTTZX9zmlO0fnleL96q5er1ffG0rKyqVSUNdyDsvLGSBOfV3EpHFTUBmHec1dIqI4XyinrrasKV5AEk45Zw11Ap2RTdjWeHFL93Phe9ibvUHz5qRghVjLI5Paj7UdkUc04-6CG1W5P2moA-ttJcn1od7MNos22LOXb4B_8BT31okg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112932342</pqid></control><display><type>article</type><title>On the adaption of biological transport networks affected by complex domains</title><source>AIP Journals Complete</source><creator>Li, Yibao ; Lv, Zhixian ; Xia, Qing</creator><creatorcontrib>Li, Yibao ; Lv, Zhixian ; Xia, Qing</creatorcontrib><description>This paper aims to simulate and analyze scenarios involving obstacles and parasitic organisms during the growth of biological structures. We introduce an innovative model of biological transport networks in complex domains. By manipulating sources and sinks, we simulate two distinct types of domains. One obstructs nutrient transport without absorbing energy. The other one obstructs transport and absorbs energy. Our model adheres to the continuous functional energy dissipation law. Employing a Crank–Nicolson type method ensures second-order time accuracy. The phase field-based discrete system is decoupled, linear, and unconditionally stable, facilitating straightforward implementation of the algorithm. Our scheme maintains stability in addressing the stiffness of the hybrid system. Our research demonstrates that effective mathematical modeling and numerical methods can accurately simulate and analyze the growth of biological transport networks in complex domains.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0231079</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Biological effects ; Biological models (mathematics) ; Discrete systems ; Energy absorption ; Energy dissipation ; Hybrid systems ; Networks ; Numerical methods</subject><ispartof>Physics of fluids (1994), 2024-10, Vol.36 (10)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c979-8a5d06c4bc81fde94c8d292af03ed5378c9a869e92ecd715985f0835c15db2883</cites><orcidid>0000-0002-4847-5430 ; 0000-0003-1608-415X ; 0009-0009-1499-2788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Yibao</creatorcontrib><creatorcontrib>Lv, Zhixian</creatorcontrib><creatorcontrib>Xia, Qing</creatorcontrib><title>On the adaption of biological transport networks affected by complex domains</title><title>Physics of fluids (1994)</title><description>This paper aims to simulate and analyze scenarios involving obstacles and parasitic organisms during the growth of biological structures. We introduce an innovative model of biological transport networks in complex domains. By manipulating sources and sinks, we simulate two distinct types of domains. One obstructs nutrient transport without absorbing energy. The other one obstructs transport and absorbs energy. Our model adheres to the continuous functional energy dissipation law. Employing a Crank–Nicolson type method ensures second-order time accuracy. The phase field-based discrete system is decoupled, linear, and unconditionally stable, facilitating straightforward implementation of the algorithm. Our scheme maintains stability in addressing the stiffness of the hybrid system. Our research demonstrates that effective mathematical modeling and numerical methods can accurately simulate and analyze the growth of biological transport networks in complex domains.</description><subject>Algorithms</subject><subject>Biological effects</subject><subject>Biological models (mathematics)</subject><subject>Discrete systems</subject><subject>Energy absorption</subject><subject>Energy dissipation</subject><subject>Hybrid systems</subject><subject>Networks</subject><subject>Numerical methods</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQgOEgCtbqwX8Q8KSwdZI02eQoxS8o9NJ7yOZDt243a5Ki_fe2bM-eZg4PM_AidEtgRkCwRz4DygjU6gxNCEhV1UKI8-NeQyUEI5foKucNADBFxQQtVz0unx4bZ4bSxh7HgJs2dvGjtabDJZk-DzEV3PvyE9NXxiYEb4t3uNljG7dD53-xi1vT9vkaXQTTZX9zmlO0fnleL96q5er1ffG0rKyqVSUNdyDsvLGSBOfV3EpHFTUBmHec1dIqI4XyinrrasKV5AEk45Zw11Ap2RTdjWeHFL93Phe9ibvUHz5qRghVjLI5Paj7UdkUc04-6CG1W5P2moA-ttJcn1od7MNos22LOXb4B_8BT31okg</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Li, Yibao</creator><creator>Lv, Zhixian</creator><creator>Xia, Qing</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4847-5430</orcidid><orcidid>https://orcid.org/0000-0003-1608-415X</orcidid><orcidid>https://orcid.org/0009-0009-1499-2788</orcidid></search><sort><creationdate>202410</creationdate><title>On the adaption of biological transport networks affected by complex domains</title><author>Li, Yibao ; Lv, Zhixian ; Xia, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c979-8a5d06c4bc81fde94c8d292af03ed5378c9a869e92ecd715985f0835c15db2883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Biological effects</topic><topic>Biological models (mathematics)</topic><topic>Discrete systems</topic><topic>Energy absorption</topic><topic>Energy dissipation</topic><topic>Hybrid systems</topic><topic>Networks</topic><topic>Numerical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yibao</creatorcontrib><creatorcontrib>Lv, Zhixian</creatorcontrib><creatorcontrib>Xia, Qing</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yibao</au><au>Lv, Zhixian</au><au>Xia, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the adaption of biological transport networks affected by complex domains</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-10</date><risdate>2024</risdate><volume>36</volume><issue>10</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>This paper aims to simulate and analyze scenarios involving obstacles and parasitic organisms during the growth of biological structures. We introduce an innovative model of biological transport networks in complex domains. By manipulating sources and sinks, we simulate two distinct types of domains. One obstructs nutrient transport without absorbing energy. The other one obstructs transport and absorbs energy. Our model adheres to the continuous functional energy dissipation law. Employing a Crank–Nicolson type method ensures second-order time accuracy. The phase field-based discrete system is decoupled, linear, and unconditionally stable, facilitating straightforward implementation of the algorithm. Our scheme maintains stability in addressing the stiffness of the hybrid system. Our research demonstrates that effective mathematical modeling and numerical methods can accurately simulate and analyze the growth of biological transport networks in complex domains.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0231079</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4847-5430</orcidid><orcidid>https://orcid.org/0000-0003-1608-415X</orcidid><orcidid>https://orcid.org/0009-0009-1499-2788</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-10, Vol.36 (10)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_3112932342
source AIP Journals Complete
subjects Algorithms
Biological effects
Biological models (mathematics)
Discrete systems
Energy absorption
Energy dissipation
Hybrid systems
Networks
Numerical methods
title On the adaption of biological transport networks affected by complex domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20adaption%20of%20biological%20transport%20networks%20affected%20by%20complex%20domains&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Li,%20Yibao&rft.date=2024-10&rft.volume=36&rft.issue=10&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0231079&rft_dat=%3Cproquest_scita%3E3112932342%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112932342&rft_id=info:pmid/&rfr_iscdi=true