On the adaption of biological transport networks affected by complex domains
This paper aims to simulate and analyze scenarios involving obstacles and parasitic organisms during the growth of biological structures. We introduce an innovative model of biological transport networks in complex domains. By manipulating sources and sinks, we simulate two distinct types of domains...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-10, Vol.36 (10) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Li, Yibao Lv, Zhixian Xia, Qing |
description | This paper aims to simulate and analyze scenarios involving obstacles and parasitic organisms during the growth of biological structures. We introduce an innovative model of biological transport networks in complex domains. By manipulating sources and sinks, we simulate two distinct types of domains. One obstructs nutrient transport without absorbing energy. The other one obstructs transport and absorbs energy. Our model adheres to the continuous functional energy dissipation law. Employing a Crank–Nicolson type method ensures second-order time accuracy. The phase field-based discrete system is decoupled, linear, and unconditionally stable, facilitating straightforward implementation of the algorithm. Our scheme maintains stability in addressing the stiffness of the hybrid system. Our research demonstrates that effective mathematical modeling and numerical methods can accurately simulate and analyze the growth of biological transport networks in complex domains. |
doi_str_mv | 10.1063/5.0231079 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3112932342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112932342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c979-8a5d06c4bc81fde94c8d292af03ed5378c9a869e92ecd715985f0835c15db2883</originalsourceid><addsrcrecordid>eNp90E1LAzEQgOEgCtbqwX8Q8KSwdZI02eQoxS8o9NJ7yOZDt243a5Ki_fe2bM-eZg4PM_AidEtgRkCwRz4DygjU6gxNCEhV1UKI8-NeQyUEI5foKucNADBFxQQtVz0unx4bZ4bSxh7HgJs2dvGjtabDJZk-DzEV3PvyE9NXxiYEb4t3uNljG7dD53-xi1vT9vkaXQTTZX9zmlO0fnleL96q5er1ffG0rKyqVSUNdyDsvLGSBOfV3EpHFTUBmHec1dIqI4XyinrrasKV5AEk45Zw11Ap2RTdjWeHFL93Phe9ibvUHz5qRghVjLI5Paj7UdkUc04-6CG1W5P2moA-ttJcn1od7MNos22LOXb4B_8BT31okg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112932342</pqid></control><display><type>article</type><title>On the adaption of biological transport networks affected by complex domains</title><source>AIP Journals Complete</source><creator>Li, Yibao ; Lv, Zhixian ; Xia, Qing</creator><creatorcontrib>Li, Yibao ; Lv, Zhixian ; Xia, Qing</creatorcontrib><description>This paper aims to simulate and analyze scenarios involving obstacles and parasitic organisms during the growth of biological structures. We introduce an innovative model of biological transport networks in complex domains. By manipulating sources and sinks, we simulate two distinct types of domains. One obstructs nutrient transport without absorbing energy. The other one obstructs transport and absorbs energy. Our model adheres to the continuous functional energy dissipation law. Employing a Crank–Nicolson type method ensures second-order time accuracy. The phase field-based discrete system is decoupled, linear, and unconditionally stable, facilitating straightforward implementation of the algorithm. Our scheme maintains stability in addressing the stiffness of the hybrid system. Our research demonstrates that effective mathematical modeling and numerical methods can accurately simulate and analyze the growth of biological transport networks in complex domains.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0231079</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Biological effects ; Biological models (mathematics) ; Discrete systems ; Energy absorption ; Energy dissipation ; Hybrid systems ; Networks ; Numerical methods</subject><ispartof>Physics of fluids (1994), 2024-10, Vol.36 (10)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c979-8a5d06c4bc81fde94c8d292af03ed5378c9a869e92ecd715985f0835c15db2883</cites><orcidid>0000-0002-4847-5430 ; 0000-0003-1608-415X ; 0009-0009-1499-2788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Yibao</creatorcontrib><creatorcontrib>Lv, Zhixian</creatorcontrib><creatorcontrib>Xia, Qing</creatorcontrib><title>On the adaption of biological transport networks affected by complex domains</title><title>Physics of fluids (1994)</title><description>This paper aims to simulate and analyze scenarios involving obstacles and parasitic organisms during the growth of biological structures. We introduce an innovative model of biological transport networks in complex domains. By manipulating sources and sinks, we simulate two distinct types of domains. One obstructs nutrient transport without absorbing energy. The other one obstructs transport and absorbs energy. Our model adheres to the continuous functional energy dissipation law. Employing a Crank–Nicolson type method ensures second-order time accuracy. The phase field-based discrete system is decoupled, linear, and unconditionally stable, facilitating straightforward implementation of the algorithm. Our scheme maintains stability in addressing the stiffness of the hybrid system. Our research demonstrates that effective mathematical modeling and numerical methods can accurately simulate and analyze the growth of biological transport networks in complex domains.</description><subject>Algorithms</subject><subject>Biological effects</subject><subject>Biological models (mathematics)</subject><subject>Discrete systems</subject><subject>Energy absorption</subject><subject>Energy dissipation</subject><subject>Hybrid systems</subject><subject>Networks</subject><subject>Numerical methods</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQgOEgCtbqwX8Q8KSwdZI02eQoxS8o9NJ7yOZDt243a5Ki_fe2bM-eZg4PM_AidEtgRkCwRz4DygjU6gxNCEhV1UKI8-NeQyUEI5foKucNADBFxQQtVz0unx4bZ4bSxh7HgJs2dvGjtabDJZk-DzEV3PvyE9NXxiYEb4t3uNljG7dD53-xi1vT9vkaXQTTZX9zmlO0fnleL96q5er1ffG0rKyqVSUNdyDsvLGSBOfV3EpHFTUBmHec1dIqI4XyinrrasKV5AEk45Zw11Ap2RTdjWeHFL93Phe9ibvUHz5qRghVjLI5Paj7UdkUc04-6CG1W5P2moA-ttJcn1od7MNos22LOXb4B_8BT31okg</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Li, Yibao</creator><creator>Lv, Zhixian</creator><creator>Xia, Qing</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4847-5430</orcidid><orcidid>https://orcid.org/0000-0003-1608-415X</orcidid><orcidid>https://orcid.org/0009-0009-1499-2788</orcidid></search><sort><creationdate>202410</creationdate><title>On the adaption of biological transport networks affected by complex domains</title><author>Li, Yibao ; Lv, Zhixian ; Xia, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c979-8a5d06c4bc81fde94c8d292af03ed5378c9a869e92ecd715985f0835c15db2883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Biological effects</topic><topic>Biological models (mathematics)</topic><topic>Discrete systems</topic><topic>Energy absorption</topic><topic>Energy dissipation</topic><topic>Hybrid systems</topic><topic>Networks</topic><topic>Numerical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yibao</creatorcontrib><creatorcontrib>Lv, Zhixian</creatorcontrib><creatorcontrib>Xia, Qing</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yibao</au><au>Lv, Zhixian</au><au>Xia, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the adaption of biological transport networks affected by complex domains</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-10</date><risdate>2024</risdate><volume>36</volume><issue>10</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>This paper aims to simulate and analyze scenarios involving obstacles and parasitic organisms during the growth of biological structures. We introduce an innovative model of biological transport networks in complex domains. By manipulating sources and sinks, we simulate two distinct types of domains. One obstructs nutrient transport without absorbing energy. The other one obstructs transport and absorbs energy. Our model adheres to the continuous functional energy dissipation law. Employing a Crank–Nicolson type method ensures second-order time accuracy. The phase field-based discrete system is decoupled, linear, and unconditionally stable, facilitating straightforward implementation of the algorithm. Our scheme maintains stability in addressing the stiffness of the hybrid system. Our research demonstrates that effective mathematical modeling and numerical methods can accurately simulate and analyze the growth of biological transport networks in complex domains.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0231079</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4847-5430</orcidid><orcidid>https://orcid.org/0000-0003-1608-415X</orcidid><orcidid>https://orcid.org/0009-0009-1499-2788</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-10, Vol.36 (10) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_3112932342 |
source | AIP Journals Complete |
subjects | Algorithms Biological effects Biological models (mathematics) Discrete systems Energy absorption Energy dissipation Hybrid systems Networks Numerical methods |
title | On the adaption of biological transport networks affected by complex domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20adaption%20of%20biological%20transport%20networks%20affected%20by%20complex%20domains&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Li,%20Yibao&rft.date=2024-10&rft.volume=36&rft.issue=10&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0231079&rft_dat=%3Cproquest_scita%3E3112932342%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112932342&rft_id=info:pmid/&rfr_iscdi=true |