Existence and Asymptotic Stability of Solutions for Periodic Parabolic Problems in Tikhonov-Type Reaction–Diffusion–Advection Systems with KPZ Nonlinearities

This paper studies time-periodic solutions of singularly perturbed Tikhonov systems of reaction–diffusion–advection equations with nonlinearities that include the square of the gradient of the unknown function (KPZ nonlinearities). The boundary layer asymptotics of solutions are constructed for Neum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of mathematical physics 2024-09, Vol.31 (3), p.504-516
Hauptverfasser: Nikulin, E.I., Nefedov, N.N., Orlov, A.O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 516
container_issue 3
container_start_page 504
container_title Russian journal of mathematical physics
container_volume 31
creator Nikulin, E.I.
Nefedov, N.N.
Orlov, A.O.
description This paper studies time-periodic solutions of singularly perturbed Tikhonov systems of reaction–diffusion–advection equations with nonlinearities that include the square of the gradient of the unknown function (KPZ nonlinearities). The boundary layer asymptotics of solutions are constructed for Neumann and Dirichlet boundary conditions. The study considers both the case of quasimonotone sources and systems without the quasimonotonicity condition. The asymptotic method of differential inequalities is used to prove theorems on the existence of solutions and their Lyapunov asymptotic stability. DOI 10.1134/S1061920824030129
doi_str_mv 10.1134/S1061920824030129
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3112837779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112837779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-1264b147ab86980d850aed4e2070514f0dd01bf9cfb8a768678355a08e9a4cc73</originalsourceid><addsrcrecordid>eNp1kU1OwzAQhSMEEqVwAHaWWAfG-XWWVfkVFVS0bNhETmJTl9QutlPIjjtwAq7GSXAIEgvEap7mvW9mpPG8QwzHGIfRyQxDgrMASBBBCDjItrwBjuPYT5KQbDvtbL_zd709Y5YACRCIBt7H2aswlsmSISorNDLtam2VFSWaWVqIWtgWKY5mqm6sUNIgrjSaMi1U5TJTqmmh6k5pVdRsZZCQaC6eFkqqjT9v1wzdMVp26Ofb-6ngvDG9HlUb9t1Hs9Yd4MgXYRfoevqAbpSshWRUCyuY2fd2OK0NO_ipQ-_-_Gw-vvQntxdX49HEL3FGrI-DJCpwlNKCJBmBisRAWRWxAFKIccShqgAXPCt5QWiakCQlYRxTICyjUVmm4dA76ueutXpumLH5UjVaupV5iHFAwjRNM5fCfarUyhjNeL7WYkV1m2PIu0_kfz7hmKBnjMvKR6Z_J_8PfQGyq49p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112837779</pqid></control><display><type>article</type><title>Existence and Asymptotic Stability of Solutions for Periodic Parabolic Problems in Tikhonov-Type Reaction–Diffusion–Advection Systems with KPZ Nonlinearities</title><source>Springer Journals</source><creator>Nikulin, E.I. ; Nefedov, N.N. ; Orlov, A.O.</creator><creatorcontrib>Nikulin, E.I. ; Nefedov, N.N. ; Orlov, A.O.</creatorcontrib><description>This paper studies time-periodic solutions of singularly perturbed Tikhonov systems of reaction–diffusion–advection equations with nonlinearities that include the square of the gradient of the unknown function (KPZ nonlinearities). The boundary layer asymptotics of solutions are constructed for Neumann and Dirichlet boundary conditions. The study considers both the case of quasimonotone sources and systems without the quasimonotonicity condition. The asymptotic method of differential inequalities is used to prove theorems on the existence of solutions and their Lyapunov asymptotic stability. DOI 10.1134/S1061920824030129</description><identifier>ISSN: 1061-9208</identifier><identifier>EISSN: 1555-6638</identifier><identifier>DOI: 10.1134/S1061920824030129</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Advection ; Advection-diffusion equation ; Asymptotic methods ; Boundary conditions ; Boundary layer stability ; Diffusion layers ; Mathematical and Computational Physics ; Nonlinearity ; Physics ; Physics and Astronomy ; Singular perturbation ; Stability ; Theoretical</subject><ispartof>Russian journal of mathematical physics, 2024-09, Vol.31 (3), p.504-516</ispartof><rights>Pleiades Publishing, Ltd. 2024</rights><rights>Pleiades Publishing, Ltd. 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-1264b147ab86980d850aed4e2070514f0dd01bf9cfb8a768678355a08e9a4cc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1061920824030129$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1061920824030129$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nikulin, E.I.</creatorcontrib><creatorcontrib>Nefedov, N.N.</creatorcontrib><creatorcontrib>Orlov, A.O.</creatorcontrib><title>Existence and Asymptotic Stability of Solutions for Periodic Parabolic Problems in Tikhonov-Type Reaction–Diffusion–Advection Systems with KPZ Nonlinearities</title><title>Russian journal of mathematical physics</title><addtitle>Russ. J. Math. Phys</addtitle><description>This paper studies time-periodic solutions of singularly perturbed Tikhonov systems of reaction–diffusion–advection equations with nonlinearities that include the square of the gradient of the unknown function (KPZ nonlinearities). The boundary layer asymptotics of solutions are constructed for Neumann and Dirichlet boundary conditions. The study considers both the case of quasimonotone sources and systems without the quasimonotonicity condition. The asymptotic method of differential inequalities is used to prove theorems on the existence of solutions and their Lyapunov asymptotic stability. DOI 10.1134/S1061920824030129</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Advection</subject><subject>Advection-diffusion equation</subject><subject>Asymptotic methods</subject><subject>Boundary conditions</subject><subject>Boundary layer stability</subject><subject>Diffusion layers</subject><subject>Mathematical and Computational Physics</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Singular perturbation</subject><subject>Stability</subject><subject>Theoretical</subject><issn>1061-9208</issn><issn>1555-6638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU1OwzAQhSMEEqVwAHaWWAfG-XWWVfkVFVS0bNhETmJTl9QutlPIjjtwAq7GSXAIEgvEap7mvW9mpPG8QwzHGIfRyQxDgrMASBBBCDjItrwBjuPYT5KQbDvtbL_zd709Y5YACRCIBt7H2aswlsmSISorNDLtam2VFSWaWVqIWtgWKY5mqm6sUNIgrjSaMi1U5TJTqmmh6k5pVdRsZZCQaC6eFkqqjT9v1wzdMVp26Ofb-6ngvDG9HlUb9t1Hs9Yd4MgXYRfoevqAbpSshWRUCyuY2fd2OK0NO_ipQ-_-_Gw-vvQntxdX49HEL3FGrI-DJCpwlNKCJBmBisRAWRWxAFKIccShqgAXPCt5QWiakCQlYRxTICyjUVmm4dA76ueutXpumLH5UjVaupV5iHFAwjRNM5fCfarUyhjNeL7WYkV1m2PIu0_kfz7hmKBnjMvKR6Z_J_8PfQGyq49p</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Nikulin, E.I.</creator><creator>Nefedov, N.N.</creator><creator>Orlov, A.O.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>Existence and Asymptotic Stability of Solutions for Periodic Parabolic Problems in Tikhonov-Type Reaction–Diffusion–Advection Systems with KPZ Nonlinearities</title><author>Nikulin, E.I. ; Nefedov, N.N. ; Orlov, A.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-1264b147ab86980d850aed4e2070514f0dd01bf9cfb8a768678355a08e9a4cc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Advection</topic><topic>Advection-diffusion equation</topic><topic>Asymptotic methods</topic><topic>Boundary conditions</topic><topic>Boundary layer stability</topic><topic>Diffusion layers</topic><topic>Mathematical and Computational Physics</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Singular perturbation</topic><topic>Stability</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikulin, E.I.</creatorcontrib><creatorcontrib>Nefedov, N.N.</creatorcontrib><creatorcontrib>Orlov, A.O.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikulin, E.I.</au><au>Nefedov, N.N.</au><au>Orlov, A.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Asymptotic Stability of Solutions for Periodic Parabolic Problems in Tikhonov-Type Reaction–Diffusion–Advection Systems with KPZ Nonlinearities</atitle><jtitle>Russian journal of mathematical physics</jtitle><stitle>Russ. J. Math. Phys</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>31</volume><issue>3</issue><spage>504</spage><epage>516</epage><pages>504-516</pages><issn>1061-9208</issn><eissn>1555-6638</eissn><abstract>This paper studies time-periodic solutions of singularly perturbed Tikhonov systems of reaction–diffusion–advection equations with nonlinearities that include the square of the gradient of the unknown function (KPZ nonlinearities). The boundary layer asymptotics of solutions are constructed for Neumann and Dirichlet boundary conditions. The study considers both the case of quasimonotone sources and systems without the quasimonotonicity condition. The asymptotic method of differential inequalities is used to prove theorems on the existence of solutions and their Lyapunov asymptotic stability. DOI 10.1134/S1061920824030129</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1061920824030129</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-9208
ispartof Russian journal of mathematical physics, 2024-09, Vol.31 (3), p.504-516
issn 1061-9208
1555-6638
language eng
recordid cdi_proquest_journals_3112837779
source Springer Journals
subjects 14/34
639/766/189
639/766/530
639/766/747
Advection
Advection-diffusion equation
Asymptotic methods
Boundary conditions
Boundary layer stability
Diffusion layers
Mathematical and Computational Physics
Nonlinearity
Physics
Physics and Astronomy
Singular perturbation
Stability
Theoretical
title Existence and Asymptotic Stability of Solutions for Periodic Parabolic Problems in Tikhonov-Type Reaction–Diffusion–Advection Systems with KPZ Nonlinearities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T17%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Asymptotic%20Stability%20of%20Solutions%20for%20Periodic%20Parabolic%20Problems%20in%20Tikhonov-Type%20Reaction%E2%80%93Diffusion%E2%80%93Advection%20Systems%20with%20KPZ%20Nonlinearities&rft.jtitle=Russian%20journal%20of%20mathematical%20physics&rft.au=Nikulin,%20E.I.&rft.date=2024-09-01&rft.volume=31&rft.issue=3&rft.spage=504&rft.epage=516&rft.pages=504-516&rft.issn=1061-9208&rft.eissn=1555-6638&rft_id=info:doi/10.1134/S1061920824030129&rft_dat=%3Cproquest_cross%3E3112837779%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112837779&rft_id=info:pmid/&rfr_iscdi=true