Advanced discovery mechanisms in model repositories

Summary As model‐driven engineering gains traction and poses as the new paradigm for software engineering, it raises a need for efficient approaches and tools to manage, discover, and retrieve relevant modeling artifacts. Hence, industry and academia are conceiving effective ways to store, search, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Software, practice & experience practice & experience, 2024-11, Vol.54 (11), p.2214-2248
Hauptverfasser: Indamutsa, Arsene, Di Rocco, Juri, Almonte, Lissette, Di Ruscio, Davide, Pierantonio, Alfonso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2248
container_issue 11
container_start_page 2214
container_title Software, practice & experience
container_volume 54
creator Indamutsa, Arsene
Di Rocco, Juri
Almonte, Lissette
Di Ruscio, Davide
Pierantonio, Alfonso
description Summary As model‐driven engineering gains traction and poses as the new paradigm for software engineering, it raises a need for efficient approaches and tools to manage, discover, and retrieve relevant modeling artifacts. Hence, industry and academia are conceiving effective ways to store, search, and retrieve heterogeneous model artifacts that employ advanced discovery mechanisms. This paper presents MDEForge‐Search, a novel approach to discovering heterogeneous model artifacts over MDEForge, a distributed cloud‐based model repository. We designed advanced discovery mechanisms that retrieve heterogeneous artifacts within their context (megamodel) and reuse them across model management services. In addition, a domain‐specific approach has been proposed to formulate queries in terms of keywords, search tags, conditional operators, quality model assessment services and a transformation chain discoverer. Finally, the applicability of our approach was assessed in a recommender system modeling framework, which, thanks to the operated integration, can rely on the availability of more than 5000 model artifacts currently persisted in our cloud‐based model repository.
doi_str_mv 10.1002/spe.3332
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3112663206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112663206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2542-b50e3fe4018be833205d0ff436c4052cf6e12c87a0225ae4405a2354f3a2b50c3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKvgT1jw4mXr5LPrsZRahYKCCt5Cmp1gyu5mTdrK_ntT69XTwPC87wwPIdcUJhSA3aUeJ5xzdkJGFO6nJTDxcUpGALwqQQlxTi5S2gBQKpkaET6r96azWBe1TzbsMQ5Fi_bTdD61qfBd0YYamyJiH5LfhugxXZIzZ5qEV39zTN4fFm_zx3L1vHyaz1alZVKwci0BuUMBtFpjlV8CWYNzgisrQDLrFFJmq6kBxqRBkZeGcSkcNyxnLR-Tm2NvH8PXDtNWb8Iudvmk5pQypXKlytTtkbIxpBTR6T761sRBU9AHJTor0QclGS2P6LdvcPiX068vi1_-BxbNYLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112663206</pqid></control><display><type>article</type><title>Advanced discovery mechanisms in model repositories</title><source>Wiley Online Library All Journals</source><creator>Indamutsa, Arsene ; Di Rocco, Juri ; Almonte, Lissette ; Di Ruscio, Davide ; Pierantonio, Alfonso</creator><creatorcontrib>Indamutsa, Arsene ; Di Rocco, Juri ; Almonte, Lissette ; Di Ruscio, Davide ; Pierantonio, Alfonso</creatorcontrib><description>Summary As model‐driven engineering gains traction and poses as the new paradigm for software engineering, it raises a need for efficient approaches and tools to manage, discover, and retrieve relevant modeling artifacts. Hence, industry and academia are conceiving effective ways to store, search, and retrieve heterogeneous model artifacts that employ advanced discovery mechanisms. This paper presents MDEForge‐Search, a novel approach to discovering heterogeneous model artifacts over MDEForge, a distributed cloud‐based model repository. We designed advanced discovery mechanisms that retrieve heterogeneous artifacts within their context (megamodel) and reuse them across model management services. In addition, a domain‐specific approach has been proposed to formulate queries in terms of keywords, search tags, conditional operators, quality model assessment services and a transformation chain discoverer. Finally, the applicability of our approach was assessed in a recommender system modeling framework, which, thanks to the operated integration, can rely on the availability of more than 5000 model artifacts currently persisted in our cloud‐based model repository.</description><identifier>ISSN: 0038-0644</identifier><identifier>EISSN: 1097-024X</identifier><identifier>DOI: 10.1002/spe.3332</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>advanced discovery mechanisms ; cloud‐based model repository ; Management services ; Modelling ; model‐driven engineering ; Quality assessment ; Recommender systems ; Repositories ; search engine ; Searching ; Software engineering</subject><ispartof>Software, practice &amp; experience, 2024-11, Vol.54 (11), p.2214-2248</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2542-b50e3fe4018be833205d0ff436c4052cf6e12c87a0225ae4405a2354f3a2b50c3</cites><orcidid>0000-0001-7416-1809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fspe.3332$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fspe.3332$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Indamutsa, Arsene</creatorcontrib><creatorcontrib>Di Rocco, Juri</creatorcontrib><creatorcontrib>Almonte, Lissette</creatorcontrib><creatorcontrib>Di Ruscio, Davide</creatorcontrib><creatorcontrib>Pierantonio, Alfonso</creatorcontrib><title>Advanced discovery mechanisms in model repositories</title><title>Software, practice &amp; experience</title><description>Summary As model‐driven engineering gains traction and poses as the new paradigm for software engineering, it raises a need for efficient approaches and tools to manage, discover, and retrieve relevant modeling artifacts. Hence, industry and academia are conceiving effective ways to store, search, and retrieve heterogeneous model artifacts that employ advanced discovery mechanisms. This paper presents MDEForge‐Search, a novel approach to discovering heterogeneous model artifacts over MDEForge, a distributed cloud‐based model repository. We designed advanced discovery mechanisms that retrieve heterogeneous artifacts within their context (megamodel) and reuse them across model management services. In addition, a domain‐specific approach has been proposed to formulate queries in terms of keywords, search tags, conditional operators, quality model assessment services and a transformation chain discoverer. Finally, the applicability of our approach was assessed in a recommender system modeling framework, which, thanks to the operated integration, can rely on the availability of more than 5000 model artifacts currently persisted in our cloud‐based model repository.</description><subject>advanced discovery mechanisms</subject><subject>cloud‐based model repository</subject><subject>Management services</subject><subject>Modelling</subject><subject>model‐driven engineering</subject><subject>Quality assessment</subject><subject>Recommender systems</subject><subject>Repositories</subject><subject>search engine</subject><subject>Searching</subject><subject>Software engineering</subject><issn>0038-0644</issn><issn>1097-024X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKvgT1jw4mXr5LPrsZRahYKCCt5Cmp1gyu5mTdrK_ntT69XTwPC87wwPIdcUJhSA3aUeJ5xzdkJGFO6nJTDxcUpGALwqQQlxTi5S2gBQKpkaET6r96azWBe1TzbsMQ5Fi_bTdD61qfBd0YYamyJiH5LfhugxXZIzZ5qEV39zTN4fFm_zx3L1vHyaz1alZVKwci0BuUMBtFpjlV8CWYNzgisrQDLrFFJmq6kBxqRBkZeGcSkcNyxnLR-Tm2NvH8PXDtNWb8Iudvmk5pQypXKlytTtkbIxpBTR6T761sRBU9AHJTor0QclGS2P6LdvcPiX068vi1_-BxbNYLQ</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Indamutsa, Arsene</creator><creator>Di Rocco, Juri</creator><creator>Almonte, Lissette</creator><creator>Di Ruscio, Davide</creator><creator>Pierantonio, Alfonso</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7416-1809</orcidid></search><sort><creationdate>202411</creationdate><title>Advanced discovery mechanisms in model repositories</title><author>Indamutsa, Arsene ; Di Rocco, Juri ; Almonte, Lissette ; Di Ruscio, Davide ; Pierantonio, Alfonso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2542-b50e3fe4018be833205d0ff436c4052cf6e12c87a0225ae4405a2354f3a2b50c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>advanced discovery mechanisms</topic><topic>cloud‐based model repository</topic><topic>Management services</topic><topic>Modelling</topic><topic>model‐driven engineering</topic><topic>Quality assessment</topic><topic>Recommender systems</topic><topic>Repositories</topic><topic>search engine</topic><topic>Searching</topic><topic>Software engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Indamutsa, Arsene</creatorcontrib><creatorcontrib>Di Rocco, Juri</creatorcontrib><creatorcontrib>Almonte, Lissette</creatorcontrib><creatorcontrib>Di Ruscio, Davide</creatorcontrib><creatorcontrib>Pierantonio, Alfonso</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Software, practice &amp; experience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Indamutsa, Arsene</au><au>Di Rocco, Juri</au><au>Almonte, Lissette</au><au>Di Ruscio, Davide</au><au>Pierantonio, Alfonso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced discovery mechanisms in model repositories</atitle><jtitle>Software, practice &amp; experience</jtitle><date>2024-11</date><risdate>2024</risdate><volume>54</volume><issue>11</issue><spage>2214</spage><epage>2248</epage><pages>2214-2248</pages><issn>0038-0644</issn><eissn>1097-024X</eissn><abstract>Summary As model‐driven engineering gains traction and poses as the new paradigm for software engineering, it raises a need for efficient approaches and tools to manage, discover, and retrieve relevant modeling artifacts. Hence, industry and academia are conceiving effective ways to store, search, and retrieve heterogeneous model artifacts that employ advanced discovery mechanisms. This paper presents MDEForge‐Search, a novel approach to discovering heterogeneous model artifacts over MDEForge, a distributed cloud‐based model repository. We designed advanced discovery mechanisms that retrieve heterogeneous artifacts within their context (megamodel) and reuse them across model management services. In addition, a domain‐specific approach has been proposed to formulate queries in terms of keywords, search tags, conditional operators, quality model assessment services and a transformation chain discoverer. Finally, the applicability of our approach was assessed in a recommender system modeling framework, which, thanks to the operated integration, can rely on the availability of more than 5000 model artifacts currently persisted in our cloud‐based model repository.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/spe.3332</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0001-7416-1809</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0038-0644
ispartof Software, practice & experience, 2024-11, Vol.54 (11), p.2214-2248
issn 0038-0644
1097-024X
language eng
recordid cdi_proquest_journals_3112663206
source Wiley Online Library All Journals
subjects advanced discovery mechanisms
cloud‐based model repository
Management services
Modelling
model‐driven engineering
Quality assessment
Recommender systems
Repositories
search engine
Searching
Software engineering
title Advanced discovery mechanisms in model repositories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20discovery%20mechanisms%20in%20model%20repositories&rft.jtitle=Software,%20practice%20&%20experience&rft.au=Indamutsa,%20Arsene&rft.date=2024-11&rft.volume=54&rft.issue=11&rft.spage=2214&rft.epage=2248&rft.pages=2214-2248&rft.issn=0038-0644&rft.eissn=1097-024X&rft_id=info:doi/10.1002/spe.3332&rft_dat=%3Cproquest_cross%3E3112663206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112663206&rft_id=info:pmid/&rfr_iscdi=true