Bacterial cellulose with CHAPK-mediated specific antimicrobial activity against Staphylococcus aureus
Wound healing represents a complex biological process often hampered by bacterial infections, in particular those caused by Staphylococcus aureus , which is already multiresistant to many antibiotics. In this sense, enzybiotics have additional advantages over conventional antibiotics, since they pro...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2024-09, Vol.31 (14), p.8711-8725 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8725 |
---|---|
container_issue | 14 |
container_start_page | 8711 |
container_title | Cellulose (London) |
container_volume | 31 |
creator | Blanco, Francisco G. Campano, Cristina Rivero-Buceta, Virginia Hernández-Arriaga, Ana M. Prieto, M. Auxiliadora |
description | Wound healing represents a complex biological process often hampered by bacterial infections, in particular those caused by
Staphylococcus aureus
, which is already multiresistant to many antibiotics. In this sense, enzybiotics have additional advantages over conventional antibiotics, since they provide pathogen specificity and do not contribute to antibiotic resistance. However, their soluble administration at the wound site would result in enzyme leakage. On the other hand, bacterial cellulose (BC) pellicles present a very promising dressing and scaffold, given its high purity, water retention capacity, and barrier effect in the wound against possible contaminants. In this study, we present a novel approach that incorporates the enzybiotic CHAP
K
into BC to develop functionalized membranes that exhibit targeted and controlled antimicrobial activity against
S. aureus
. The kinetic tests revealed a continuous loading of the enzybiotic into BC until it reaches a maximum and a two-stage release process, characterized by an initial fast release followed by a sustained release. Attenuated total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), and Confocal Laser Scanning Microscopy (CLSM) confirmed the incorporation and the preferential surface localization of CHAP
K
within the BC membranes. Finally, the BC/CHAP
K
materials demonstrated the sustained reduction of up to 4 logarithmic units in the viability of
S. aureus
. Overall, the biomaterials developed here exhibit promising antimicrobial efficacy against
S. aureus
, offering a potential strategy for wound management and skin infection control while maintaining unharmed the commensal skin microbiota, which impairment could compromise the integrity of the skin barrier function. |
doi_str_mv | 10.1007/s10570-024-06123-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3112659729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112659729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-9b704a2ddb58d97c28e12a29e55ca3e29f5f191cb09c8a7d99cdce3a5a260b683</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeA5-okbdrmuC7qioKCCt5Cmk53s3TbmqTKvr1ZV_DmaQ7zf_8wHyHnDC4ZQHHlGYgCEuBZAjnjaQIHZMJEwZOy5O-HZAIyl3GdymNy4v0aAGTB2YTgtTYBndUtNdi2Y9t7pF82rOh8MXt-SDZYWx2wpn5AYxtrqO6C3Vjj-moHRdp-2rCleqlt5wN9CXpYbdve9MaMnurR4ehPyVGjW49nv3NK3m5vXueL5PHp7n4-e0wMz7KQyKqATPO6rkRZy8LwEhnXXKIQRqfIZSMaJpmpQJpSF7WUpjaYaqF5DlVeplNyse8dXP8xog9q3Y-uiydVyhjPRXxaxhTfp-IT3jts1ODsRrutYqB2OtVep4o61Y9OBRFK95CP4W6J7q_6H-obqqF6AQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112659729</pqid></control><display><type>article</type><title>Bacterial cellulose with CHAPK-mediated specific antimicrobial activity against Staphylococcus aureus</title><source>SpringerNature Journals</source><creator>Blanco, Francisco G. ; Campano, Cristina ; Rivero-Buceta, Virginia ; Hernández-Arriaga, Ana M. ; Prieto, M. Auxiliadora</creator><creatorcontrib>Blanco, Francisco G. ; Campano, Cristina ; Rivero-Buceta, Virginia ; Hernández-Arriaga, Ana M. ; Prieto, M. Auxiliadora</creatorcontrib><description>Wound healing represents a complex biological process often hampered by bacterial infections, in particular those caused by
Staphylococcus aureus
, which is already multiresistant to many antibiotics. In this sense, enzybiotics have additional advantages over conventional antibiotics, since they provide pathogen specificity and do not contribute to antibiotic resistance. However, their soluble administration at the wound site would result in enzyme leakage. On the other hand, bacterial cellulose (BC) pellicles present a very promising dressing and scaffold, given its high purity, water retention capacity, and barrier effect in the wound against possible contaminants. In this study, we present a novel approach that incorporates the enzybiotic CHAP
K
into BC to develop functionalized membranes that exhibit targeted and controlled antimicrobial activity against
S. aureus
. The kinetic tests revealed a continuous loading of the enzybiotic into BC until it reaches a maximum and a two-stage release process, characterized by an initial fast release followed by a sustained release. Attenuated total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), and Confocal Laser Scanning Microscopy (CLSM) confirmed the incorporation and the preferential surface localization of CHAP
K
within the BC membranes. Finally, the BC/CHAP
K
materials demonstrated the sustained reduction of up to 4 logarithmic units in the viability of
S. aureus
. Overall, the biomaterials developed here exhibit promising antimicrobial efficacy against
S. aureus
, offering a potential strategy for wound management and skin infection control while maintaining unharmed the commensal skin microbiota, which impairment could compromise the integrity of the skin barrier function.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-024-06123-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Antibiotics ; Antimicrobial agents ; Biological activity ; Biomedical materials ; Bioorganic Chemistry ; Cellulose ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Contaminants ; Fourier transforms ; Glass ; Infrared reflection ; Membranes ; Microscopy ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Scanning microscopy ; Sustainable Development ; Sustained release ; Wound healing</subject><ispartof>Cellulose (London), 2024-09, Vol.31 (14), p.8711-8725</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-9b704a2ddb58d97c28e12a29e55ca3e29f5f191cb09c8a7d99cdce3a5a260b683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-024-06123-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-024-06123-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Blanco, Francisco G.</creatorcontrib><creatorcontrib>Campano, Cristina</creatorcontrib><creatorcontrib>Rivero-Buceta, Virginia</creatorcontrib><creatorcontrib>Hernández-Arriaga, Ana M.</creatorcontrib><creatorcontrib>Prieto, M. Auxiliadora</creatorcontrib><title>Bacterial cellulose with CHAPK-mediated specific antimicrobial activity against Staphylococcus aureus</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Wound healing represents a complex biological process often hampered by bacterial infections, in particular those caused by
Staphylococcus aureus
, which is already multiresistant to many antibiotics. In this sense, enzybiotics have additional advantages over conventional antibiotics, since they provide pathogen specificity and do not contribute to antibiotic resistance. However, their soluble administration at the wound site would result in enzyme leakage. On the other hand, bacterial cellulose (BC) pellicles present a very promising dressing and scaffold, given its high purity, water retention capacity, and barrier effect in the wound against possible contaminants. In this study, we present a novel approach that incorporates the enzybiotic CHAP
K
into BC to develop functionalized membranes that exhibit targeted and controlled antimicrobial activity against
S. aureus
. The kinetic tests revealed a continuous loading of the enzybiotic into BC until it reaches a maximum and a two-stage release process, characterized by an initial fast release followed by a sustained release. Attenuated total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), and Confocal Laser Scanning Microscopy (CLSM) confirmed the incorporation and the preferential surface localization of CHAP
K
within the BC membranes. Finally, the BC/CHAP
K
materials demonstrated the sustained reduction of up to 4 logarithmic units in the viability of
S. aureus
. Overall, the biomaterials developed here exhibit promising antimicrobial efficacy against
S. aureus
, offering a potential strategy for wound management and skin infection control while maintaining unharmed the commensal skin microbiota, which impairment could compromise the integrity of the skin barrier function.</description><subject>Antibiotics</subject><subject>Antimicrobial agents</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Bioorganic Chemistry</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Contaminants</subject><subject>Fourier transforms</subject><subject>Glass</subject><subject>Infrared reflection</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Scanning microscopy</subject><subject>Sustainable Development</subject><subject>Sustained release</subject><subject>Wound healing</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFKxDAQhoMouK6-gKeA5-okbdrmuC7qioKCCt5Cmk53s3TbmqTKvr1ZV_DmaQ7zf_8wHyHnDC4ZQHHlGYgCEuBZAjnjaQIHZMJEwZOy5O-HZAIyl3GdymNy4v0aAGTB2YTgtTYBndUtNdi2Y9t7pF82rOh8MXt-SDZYWx2wpn5AYxtrqO6C3Vjj-moHRdp-2rCleqlt5wN9CXpYbdve9MaMnurR4ehPyVGjW49nv3NK3m5vXueL5PHp7n4-e0wMz7KQyKqATPO6rkRZy8LwEhnXXKIQRqfIZSMaJpmpQJpSF7WUpjaYaqF5DlVeplNyse8dXP8xog9q3Y-uiydVyhjPRXxaxhTfp-IT3jts1ODsRrutYqB2OtVep4o61Y9OBRFK95CP4W6J7q_6H-obqqF6AQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Blanco, Francisco G.</creator><creator>Campano, Cristina</creator><creator>Rivero-Buceta, Virginia</creator><creator>Hernández-Arriaga, Ana M.</creator><creator>Prieto, M. Auxiliadora</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>Bacterial cellulose with CHAPK-mediated specific antimicrobial activity against Staphylococcus aureus</title><author>Blanco, Francisco G. ; Campano, Cristina ; Rivero-Buceta, Virginia ; Hernández-Arriaga, Ana M. ; Prieto, M. Auxiliadora</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-9b704a2ddb58d97c28e12a29e55ca3e29f5f191cb09c8a7d99cdce3a5a260b683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antibiotics</topic><topic>Antimicrobial agents</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Bioorganic Chemistry</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Contaminants</topic><topic>Fourier transforms</topic><topic>Glass</topic><topic>Infrared reflection</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Scanning microscopy</topic><topic>Sustainable Development</topic><topic>Sustained release</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanco, Francisco G.</creatorcontrib><creatorcontrib>Campano, Cristina</creatorcontrib><creatorcontrib>Rivero-Buceta, Virginia</creatorcontrib><creatorcontrib>Hernández-Arriaga, Ana M.</creatorcontrib><creatorcontrib>Prieto, M. Auxiliadora</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanco, Francisco G.</au><au>Campano, Cristina</au><au>Rivero-Buceta, Virginia</au><au>Hernández-Arriaga, Ana M.</au><au>Prieto, M. Auxiliadora</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial cellulose with CHAPK-mediated specific antimicrobial activity against Staphylococcus aureus</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>31</volume><issue>14</issue><spage>8711</spage><epage>8725</epage><pages>8711-8725</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Wound healing represents a complex biological process often hampered by bacterial infections, in particular those caused by
Staphylococcus aureus
, which is already multiresistant to many antibiotics. In this sense, enzybiotics have additional advantages over conventional antibiotics, since they provide pathogen specificity and do not contribute to antibiotic resistance. However, their soluble administration at the wound site would result in enzyme leakage. On the other hand, bacterial cellulose (BC) pellicles present a very promising dressing and scaffold, given its high purity, water retention capacity, and barrier effect in the wound against possible contaminants. In this study, we present a novel approach that incorporates the enzybiotic CHAP
K
into BC to develop functionalized membranes that exhibit targeted and controlled antimicrobial activity against
S. aureus
. The kinetic tests revealed a continuous loading of the enzybiotic into BC until it reaches a maximum and a two-stage release process, characterized by an initial fast release followed by a sustained release. Attenuated total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), and Confocal Laser Scanning Microscopy (CLSM) confirmed the incorporation and the preferential surface localization of CHAP
K
within the BC membranes. Finally, the BC/CHAP
K
materials demonstrated the sustained reduction of up to 4 logarithmic units in the viability of
S. aureus
. Overall, the biomaterials developed here exhibit promising antimicrobial efficacy against
S. aureus
, offering a potential strategy for wound management and skin infection control while maintaining unharmed the commensal skin microbiota, which impairment could compromise the integrity of the skin barrier function.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-024-06123-0</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2024-09, Vol.31 (14), p.8711-8725 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_3112659729 |
source | SpringerNature Journals |
subjects | Antibiotics Antimicrobial agents Biological activity Biomedical materials Bioorganic Chemistry Cellulose Ceramics Chemistry Chemistry and Materials Science Composites Contaminants Fourier transforms Glass Infrared reflection Membranes Microscopy Natural Materials Organic Chemistry Original Research Physical Chemistry Polymer Sciences Scanning microscopy Sustainable Development Sustained release Wound healing |
title | Bacterial cellulose with CHAPK-mediated specific antimicrobial activity against Staphylococcus aureus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20cellulose%20with%20CHAPK-mediated%20specific%20antimicrobial%20activity%20against%20Staphylococcus%20aureus&rft.jtitle=Cellulose%20(London)&rft.au=Blanco,%20Francisco%20G.&rft.date=2024-09-01&rft.volume=31&rft.issue=14&rft.spage=8711&rft.epage=8725&rft.pages=8711-8725&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-024-06123-0&rft_dat=%3Cproquest_cross%3E3112659729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112659729&rft_id=info:pmid/&rfr_iscdi=true |