The Peculiar Radio Evolution of the Tidal Disruption Event ASASSN-19bt
We present detailed radio observations of the tidal disruption event (TDE) ASASSN-19bt/AT 2019ahk, obtained with the Australia Telescope Compact Array, the Atacama Large Millimeter/submillimeter Array, and the MeerKAT radio telescopes, spanning 40–1464 days after the onset of the optical flare. We f...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2024-10, Vol.974 (1), p.18 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 18 |
container_title | The Astrophysical journal |
container_volume | 974 |
creator | Christy, Collin T. Alexander, Kate D. Margutti, Raffaella Wieringa, Mark Cendes, Yvette Chornock, Ryan Laskar, Tanmoy Berger, Edo Bietenholz, Michael Coppejans, Deanne L. De Colle, Fabio Eftekhari, Tarraneh Holoien, Thomas W.-S. Matsumoto, Tatsuya Miller-Jones, James C. A. Ramirez-Ruiz, Enrico Saxton, Richard van Velzen, Sjoert |
description | We present detailed radio observations of the tidal disruption event (TDE) ASASSN-19bt/AT 2019ahk, obtained with the Australia Telescope Compact Array, the Atacama Large Millimeter/submillimeter Array, and the MeerKAT radio telescopes, spanning 40–1464 days after the onset of the optical flare. We find that ASASSN-19bt displays unusual radio evolution compared to other TDEs, as the peak brightness of its radio emission increases rapidly until 457 days post-optical discovery and then plateaus. Using a generalized approach to standard equipartition techniques, we estimate the energy and corresponding physical parameters for two possible emission geometries: a nonrelativistic spherical outflow and a relativistic outflow observed from a range of viewing angles. We find that the nonrelativistic solution implies a continuous energy rise in the outflow from
E
∼ 10
46
to
E
∼ 10
49
erg with outflow speed
β
≈ 0.05, while the off-axis relativistic jet solution instead suggests
E
≈ 10
52
erg with Lorentz factor Γ ∼ 10 at late times in the maximally off-axis case. We find that neither model provides a holistic explanation for the origin and evolution of the radio emission, emphasizing the need for more complex models. ASASSN-19bt joins the population of TDEs that display unusual radio emission at late times. Conducting long-term radio observations of these TDEs, especially during the later phases, will be crucial for understanding how these types of radio emission in TDEs are produced. |
doi_str_mv | 10.3847/1538-4357/ad675b |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3112507154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8d9201710e5c47dfa11c2e0616fb3014</doaj_id><sourcerecordid>3112507154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-44b47032fcc393623fd0dc52a8aed261d06b658693cac019633e4fd40db769373</originalsourceid><addsrcrecordid>eNp1UMtKw0AUHUTBWt27DLg1dt6TLEtttVBUbAV3w2QeOiV24iQp-PcmjejK1eWeex6XA8Algjcko2KCGMlSSpiYKMMFK47A6Bc6BiMIIU05Ea-n4Kyut_2K83wEFpt3mzxZ3ZZexeRZGR-S-T6UbePDLgkuabr7xhtVJre-jm11wOd7u2uS6Xq6Xj-kKC-ac3DiVFnbi585Bi-L-WZ2n64e75az6SrVXVqTUlpQAQl2WpOccEycgUYzrDJlDebIQF5wlvGcaKUhyjkhljpDoSlEBwoyBsvB1wS1lVX0Hyp-yaC8PAAhvkkVG69LKzOTY4gEgpZpKoxTCGlsIUfcFQQi2nldDV5VDJ-trRu5DW3cde9LghBmUCDWs-DA0jHUdbTuNxVB2Tcv-5plX7Mcmu8k14PEh-rP81_6NxT1gRo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112507154</pqid></control><display><type>article</type><title>The Peculiar Radio Evolution of the Tidal Disruption Event ASASSN-19bt</title><source>DOAJ Directory of Open Access Journals</source><source>IOP Publishing</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Christy, Collin T. ; Alexander, Kate D. ; Margutti, Raffaella ; Wieringa, Mark ; Cendes, Yvette ; Chornock, Ryan ; Laskar, Tanmoy ; Berger, Edo ; Bietenholz, Michael ; Coppejans, Deanne L. ; De Colle, Fabio ; Eftekhari, Tarraneh ; Holoien, Thomas W.-S. ; Matsumoto, Tatsuya ; Miller-Jones, James C. A. ; Ramirez-Ruiz, Enrico ; Saxton, Richard ; van Velzen, Sjoert</creator><creatorcontrib>Christy, Collin T. ; Alexander, Kate D. ; Margutti, Raffaella ; Wieringa, Mark ; Cendes, Yvette ; Chornock, Ryan ; Laskar, Tanmoy ; Berger, Edo ; Bietenholz, Michael ; Coppejans, Deanne L. ; De Colle, Fabio ; Eftekhari, Tarraneh ; Holoien, Thomas W.-S. ; Matsumoto, Tatsuya ; Miller-Jones, James C. A. ; Ramirez-Ruiz, Enrico ; Saxton, Richard ; van Velzen, Sjoert</creatorcontrib><description>We present detailed radio observations of the tidal disruption event (TDE) ASASSN-19bt/AT 2019ahk, obtained with the Australia Telescope Compact Array, the Atacama Large Millimeter/submillimeter Array, and the MeerKAT radio telescopes, spanning 40–1464 days after the onset of the optical flare. We find that ASASSN-19bt displays unusual radio evolution compared to other TDEs, as the peak brightness of its radio emission increases rapidly until 457 days post-optical discovery and then plateaus. Using a generalized approach to standard equipartition techniques, we estimate the energy and corresponding physical parameters for two possible emission geometries: a nonrelativistic spherical outflow and a relativistic outflow observed from a range of viewing angles. We find that the nonrelativistic solution implies a continuous energy rise in the outflow from
E
∼ 10
46
to
E
∼ 10
49
erg with outflow speed
β
≈ 0.05, while the off-axis relativistic jet solution instead suggests
E
≈ 10
52
erg with Lorentz factor Γ ∼ 10 at late times in the maximally off-axis case. We find that neither model provides a holistic explanation for the origin and evolution of the radio emission, emphasizing the need for more complex models. ASASSN-19bt joins the population of TDEs that display unusual radio emission at late times. Conducting long-term radio observations of these TDEs, especially during the later phases, will be crucial for understanding how these types of radio emission in TDEs are produced.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad675b</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accretion ; Arrays ; Black hole physics ; Disruption ; Evolution ; Jets ; Lorentz factor ; Outflow ; Parameter estimation ; Physical properties ; Plateaus ; Radio emission ; Radio observation ; Radio telescopes ; Radio transient sources ; Relativistic effects ; Relativistic velocity ; Telescopes ; Tidal disruption</subject><ispartof>The Astrophysical journal, 2024-10, Vol.974 (1), p.18</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c299t-44b47032fcc393623fd0dc52a8aed261d06b658693cac019633e4fd40db769373</cites><orcidid>0000-0002-3859-8074 ; 0000-0002-0592-4152 ; 0000-0002-7721-8660 ; 0000-0002-8297-2473 ; 0000-0002-4912-2477 ; 0000-0001-7007-6295 ; 0000-0003-4768-7586 ; 0000-0003-3124-2814 ; 0000-0002-3137-4633 ; 0000-0001-9206-3460 ; 0000-0001-5126-6237 ; 0000-0003-1792-2338 ; 0000-0002-9350-6793 ; 0000-0003-2558-3102 ; 0000-0003-0528-202X ; 0000-0003-0307-9984 ; 0000-0002-9392-9681 ; 0000-0002-7706-5668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad675b/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Christy, Collin T.</creatorcontrib><creatorcontrib>Alexander, Kate D.</creatorcontrib><creatorcontrib>Margutti, Raffaella</creatorcontrib><creatorcontrib>Wieringa, Mark</creatorcontrib><creatorcontrib>Cendes, Yvette</creatorcontrib><creatorcontrib>Chornock, Ryan</creatorcontrib><creatorcontrib>Laskar, Tanmoy</creatorcontrib><creatorcontrib>Berger, Edo</creatorcontrib><creatorcontrib>Bietenholz, Michael</creatorcontrib><creatorcontrib>Coppejans, Deanne L.</creatorcontrib><creatorcontrib>De Colle, Fabio</creatorcontrib><creatorcontrib>Eftekhari, Tarraneh</creatorcontrib><creatorcontrib>Holoien, Thomas W.-S.</creatorcontrib><creatorcontrib>Matsumoto, Tatsuya</creatorcontrib><creatorcontrib>Miller-Jones, James C. A.</creatorcontrib><creatorcontrib>Ramirez-Ruiz, Enrico</creatorcontrib><creatorcontrib>Saxton, Richard</creatorcontrib><creatorcontrib>van Velzen, Sjoert</creatorcontrib><title>The Peculiar Radio Evolution of the Tidal Disruption Event ASASSN-19bt</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present detailed radio observations of the tidal disruption event (TDE) ASASSN-19bt/AT 2019ahk, obtained with the Australia Telescope Compact Array, the Atacama Large Millimeter/submillimeter Array, and the MeerKAT radio telescopes, spanning 40–1464 days after the onset of the optical flare. We find that ASASSN-19bt displays unusual radio evolution compared to other TDEs, as the peak brightness of its radio emission increases rapidly until 457 days post-optical discovery and then plateaus. Using a generalized approach to standard equipartition techniques, we estimate the energy and corresponding physical parameters for two possible emission geometries: a nonrelativistic spherical outflow and a relativistic outflow observed from a range of viewing angles. We find that the nonrelativistic solution implies a continuous energy rise in the outflow from
E
∼ 10
46
to
E
∼ 10
49
erg with outflow speed
β
≈ 0.05, while the off-axis relativistic jet solution instead suggests
E
≈ 10
52
erg with Lorentz factor Γ ∼ 10 at late times in the maximally off-axis case. We find that neither model provides a holistic explanation for the origin and evolution of the radio emission, emphasizing the need for more complex models. ASASSN-19bt joins the population of TDEs that display unusual radio emission at late times. Conducting long-term radio observations of these TDEs, especially during the later phases, will be crucial for understanding how these types of radio emission in TDEs are produced.</description><subject>Accretion</subject><subject>Arrays</subject><subject>Black hole physics</subject><subject>Disruption</subject><subject>Evolution</subject><subject>Jets</subject><subject>Lorentz factor</subject><subject>Outflow</subject><subject>Parameter estimation</subject><subject>Physical properties</subject><subject>Plateaus</subject><subject>Radio emission</subject><subject>Radio observation</subject><subject>Radio telescopes</subject><subject>Radio transient sources</subject><subject>Relativistic effects</subject><subject>Relativistic velocity</subject><subject>Telescopes</subject><subject>Tidal disruption</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1UMtKw0AUHUTBWt27DLg1dt6TLEtttVBUbAV3w2QeOiV24iQp-PcmjejK1eWeex6XA8Algjcko2KCGMlSSpiYKMMFK47A6Bc6BiMIIU05Ea-n4Kyut_2K83wEFpt3mzxZ3ZZexeRZGR-S-T6UbePDLgkuabr7xhtVJre-jm11wOd7u2uS6Xq6Xj-kKC-ac3DiVFnbi585Bi-L-WZ2n64e75az6SrVXVqTUlpQAQl2WpOccEycgUYzrDJlDebIQF5wlvGcaKUhyjkhljpDoSlEBwoyBsvB1wS1lVX0Hyp-yaC8PAAhvkkVG69LKzOTY4gEgpZpKoxTCGlsIUfcFQQi2nldDV5VDJ-trRu5DW3cde9LghBmUCDWs-DA0jHUdbTuNxVB2Tcv-5plX7Mcmu8k14PEh-rP81_6NxT1gRo</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Christy, Collin T.</creator><creator>Alexander, Kate D.</creator><creator>Margutti, Raffaella</creator><creator>Wieringa, Mark</creator><creator>Cendes, Yvette</creator><creator>Chornock, Ryan</creator><creator>Laskar, Tanmoy</creator><creator>Berger, Edo</creator><creator>Bietenholz, Michael</creator><creator>Coppejans, Deanne L.</creator><creator>De Colle, Fabio</creator><creator>Eftekhari, Tarraneh</creator><creator>Holoien, Thomas W.-S.</creator><creator>Matsumoto, Tatsuya</creator><creator>Miller-Jones, James C. A.</creator><creator>Ramirez-Ruiz, Enrico</creator><creator>Saxton, Richard</creator><creator>van Velzen, Sjoert</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3859-8074</orcidid><orcidid>https://orcid.org/0000-0002-0592-4152</orcidid><orcidid>https://orcid.org/0000-0002-7721-8660</orcidid><orcidid>https://orcid.org/0000-0002-8297-2473</orcidid><orcidid>https://orcid.org/0000-0002-4912-2477</orcidid><orcidid>https://orcid.org/0000-0001-7007-6295</orcidid><orcidid>https://orcid.org/0000-0003-4768-7586</orcidid><orcidid>https://orcid.org/0000-0003-3124-2814</orcidid><orcidid>https://orcid.org/0000-0002-3137-4633</orcidid><orcidid>https://orcid.org/0000-0001-9206-3460</orcidid><orcidid>https://orcid.org/0000-0001-5126-6237</orcidid><orcidid>https://orcid.org/0000-0003-1792-2338</orcidid><orcidid>https://orcid.org/0000-0002-9350-6793</orcidid><orcidid>https://orcid.org/0000-0003-2558-3102</orcidid><orcidid>https://orcid.org/0000-0003-0528-202X</orcidid><orcidid>https://orcid.org/0000-0003-0307-9984</orcidid><orcidid>https://orcid.org/0000-0002-9392-9681</orcidid><orcidid>https://orcid.org/0000-0002-7706-5668</orcidid></search><sort><creationdate>20241001</creationdate><title>The Peculiar Radio Evolution of the Tidal Disruption Event ASASSN-19bt</title><author>Christy, Collin T. ; Alexander, Kate D. ; Margutti, Raffaella ; Wieringa, Mark ; Cendes, Yvette ; Chornock, Ryan ; Laskar, Tanmoy ; Berger, Edo ; Bietenholz, Michael ; Coppejans, Deanne L. ; De Colle, Fabio ; Eftekhari, Tarraneh ; Holoien, Thomas W.-S. ; Matsumoto, Tatsuya ; Miller-Jones, James C. A. ; Ramirez-Ruiz, Enrico ; Saxton, Richard ; van Velzen, Sjoert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-44b47032fcc393623fd0dc52a8aed261d06b658693cac019633e4fd40db769373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accretion</topic><topic>Arrays</topic><topic>Black hole physics</topic><topic>Disruption</topic><topic>Evolution</topic><topic>Jets</topic><topic>Lorentz factor</topic><topic>Outflow</topic><topic>Parameter estimation</topic><topic>Physical properties</topic><topic>Plateaus</topic><topic>Radio emission</topic><topic>Radio observation</topic><topic>Radio telescopes</topic><topic>Radio transient sources</topic><topic>Relativistic effects</topic><topic>Relativistic velocity</topic><topic>Telescopes</topic><topic>Tidal disruption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christy, Collin T.</creatorcontrib><creatorcontrib>Alexander, Kate D.</creatorcontrib><creatorcontrib>Margutti, Raffaella</creatorcontrib><creatorcontrib>Wieringa, Mark</creatorcontrib><creatorcontrib>Cendes, Yvette</creatorcontrib><creatorcontrib>Chornock, Ryan</creatorcontrib><creatorcontrib>Laskar, Tanmoy</creatorcontrib><creatorcontrib>Berger, Edo</creatorcontrib><creatorcontrib>Bietenholz, Michael</creatorcontrib><creatorcontrib>Coppejans, Deanne L.</creatorcontrib><creatorcontrib>De Colle, Fabio</creatorcontrib><creatorcontrib>Eftekhari, Tarraneh</creatorcontrib><creatorcontrib>Holoien, Thomas W.-S.</creatorcontrib><creatorcontrib>Matsumoto, Tatsuya</creatorcontrib><creatorcontrib>Miller-Jones, James C. A.</creatorcontrib><creatorcontrib>Ramirez-Ruiz, Enrico</creatorcontrib><creatorcontrib>Saxton, Richard</creatorcontrib><creatorcontrib>van Velzen, Sjoert</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christy, Collin T.</au><au>Alexander, Kate D.</au><au>Margutti, Raffaella</au><au>Wieringa, Mark</au><au>Cendes, Yvette</au><au>Chornock, Ryan</au><au>Laskar, Tanmoy</au><au>Berger, Edo</au><au>Bietenholz, Michael</au><au>Coppejans, Deanne L.</au><au>De Colle, Fabio</au><au>Eftekhari, Tarraneh</au><au>Holoien, Thomas W.-S.</au><au>Matsumoto, Tatsuya</au><au>Miller-Jones, James C. A.</au><au>Ramirez-Ruiz, Enrico</au><au>Saxton, Richard</au><au>van Velzen, Sjoert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Peculiar Radio Evolution of the Tidal Disruption Event ASASSN-19bt</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>974</volume><issue>1</issue><spage>18</spage><pages>18-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present detailed radio observations of the tidal disruption event (TDE) ASASSN-19bt/AT 2019ahk, obtained with the Australia Telescope Compact Array, the Atacama Large Millimeter/submillimeter Array, and the MeerKAT radio telescopes, spanning 40–1464 days after the onset of the optical flare. We find that ASASSN-19bt displays unusual radio evolution compared to other TDEs, as the peak brightness of its radio emission increases rapidly until 457 days post-optical discovery and then plateaus. Using a generalized approach to standard equipartition techniques, we estimate the energy and corresponding physical parameters for two possible emission geometries: a nonrelativistic spherical outflow and a relativistic outflow observed from a range of viewing angles. We find that the nonrelativistic solution implies a continuous energy rise in the outflow from
E
∼ 10
46
to
E
∼ 10
49
erg with outflow speed
β
≈ 0.05, while the off-axis relativistic jet solution instead suggests
E
≈ 10
52
erg with Lorentz factor Γ ∼ 10 at late times in the maximally off-axis case. We find that neither model provides a holistic explanation for the origin and evolution of the radio emission, emphasizing the need for more complex models. ASASSN-19bt joins the population of TDEs that display unusual radio emission at late times. Conducting long-term radio observations of these TDEs, especially during the later phases, will be crucial for understanding how these types of radio emission in TDEs are produced.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad675b</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3859-8074</orcidid><orcidid>https://orcid.org/0000-0002-0592-4152</orcidid><orcidid>https://orcid.org/0000-0002-7721-8660</orcidid><orcidid>https://orcid.org/0000-0002-8297-2473</orcidid><orcidid>https://orcid.org/0000-0002-4912-2477</orcidid><orcidid>https://orcid.org/0000-0001-7007-6295</orcidid><orcidid>https://orcid.org/0000-0003-4768-7586</orcidid><orcidid>https://orcid.org/0000-0003-3124-2814</orcidid><orcidid>https://orcid.org/0000-0002-3137-4633</orcidid><orcidid>https://orcid.org/0000-0001-9206-3460</orcidid><orcidid>https://orcid.org/0000-0001-5126-6237</orcidid><orcidid>https://orcid.org/0000-0003-1792-2338</orcidid><orcidid>https://orcid.org/0000-0002-9350-6793</orcidid><orcidid>https://orcid.org/0000-0003-2558-3102</orcidid><orcidid>https://orcid.org/0000-0003-0528-202X</orcidid><orcidid>https://orcid.org/0000-0003-0307-9984</orcidid><orcidid>https://orcid.org/0000-0002-9392-9681</orcidid><orcidid>https://orcid.org/0000-0002-7706-5668</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2024-10, Vol.974 (1), p.18 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_3112507154 |
source | DOAJ Directory of Open Access Journals; IOP Publishing; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Accretion Arrays Black hole physics Disruption Evolution Jets Lorentz factor Outflow Parameter estimation Physical properties Plateaus Radio emission Radio observation Radio telescopes Radio transient sources Relativistic effects Relativistic velocity Telescopes Tidal disruption |
title | The Peculiar Radio Evolution of the Tidal Disruption Event ASASSN-19bt |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Peculiar%20Radio%20Evolution%20of%20the%20Tidal%20Disruption%20Event%20ASASSN-19bt&rft.jtitle=The%20Astrophysical%20journal&rft.au=Christy,%20Collin%20T.&rft.date=2024-10-01&rft.volume=974&rft.issue=1&rft.spage=18&rft.pages=18-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad675b&rft_dat=%3Cproquest_doaj_%3E3112507154%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112507154&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_8d9201710e5c47dfa11c2e0616fb3014&rfr_iscdi=true |